
Generating Help for Eclipse Plug-ins ! 1

! Generating Help for Eclipse Plug-ins
This document describes the process used by the TechPubs department at Agitar Software (in
Mountain View, CA) to generate help for an Eclipse plug-in. Feel free to use this information
for your own projects. If you have questions, you can write to me (Martha Kolman-Davidson,
martha@agitar.com or editrix@nemasys.com).

To support the integration of Agitator 2.0 with Eclipse, TechPubs has created Eclipse-style
help from FrameMaker source files, converted to HTML using WebWorks Publisher Pro
2003 (WWP). Because WWP does not provide templates that generate help using the
Eclipse-specific file formats for the TOC and for context-sensitive help topics, extra work was
required to generate help in the required format, starting with WWP’s Dynamic HTML
template.

As part of the process, we chose to require specific FrameMaker formatting in order to
simplify the WWP processing for context-sensitive help topics. Rather than delving deeply
enough into the WWP macro language to buffer the content of these topics in an iterator and
write them at the end of the generation process, we chose to add extra FrameMaker constructs
and to map those directly to lines of generated XML text (using @WRITE macros).

The following topics describe the process we used to create the WWP template to generate
Eclipse help:

! About Eclipse Help

! WebWorks Conversion Template Changes

! Generating the Table of Contents

! Supporting Context-Sensitive Help (Infopops)

! Packaging and Installing the Generated Help

About Eclipse Help

Help for Eclipse plug-ins uses HTML pages, displayed in Eclipse’s custom help browser, with
a Table of Contents pane on the left and help topic content on the right. The Table of
Contents combines entries for all plug-ins, using content from XML files in a specific format
(see “Generating the Table of Contents” on page 3). The left pane also shows results of full-
text searches. Eclipse help provides no built-in support for “back of the book” type indexes,
only full-text search.

http://www.agitar.com
mailto:martha@agitar.com
mailto:editrix@nemasys.com

2 ! Generating Help for Eclipse Plug-ins

The generated help plug-in for Agitator looks like this:

Eclipse uses special popup topics (known as infopops) for context-sensitive help, invoked only
by F1, and not by Help buttons in dialog boxes. Each infopop has a brief description of the
view, editor, or dialog box that has focus, followed by one or more links to topics elsewhere in
the corresponding plug-in’s help (see “Supporting Context-Sensitive Help (Infopops)” on
page 5).

NOTE: Using build M8 of Eclipse 3.0, I notice that if I press F1 in a view or editor pane, and
click a link from the infopop, the proprietary help browser displays the topic. If, however, I
press F1 from a dialog box and then click a link from the infopop, my default browser (in this
case, Mozilla 1.6) displays the help topic, including the TOC pane.

Generating Help for Eclipse Plug-ins ! 3

WebWorks Conversion Template Changes

To generate help for Eclipse, TechPubs started with WWP’s Dynamic HTML template,
which generates individual HTML pages for each topic, with bare-bones navigation through
the topics in the sequence they appear in the FrameMaker book.

The following customization has been made to this template:

! Modified normal.asp to add page headers and footers to look like the corresponding
topics in the JavaHelp for Agitator 1.1.

! Changed the default output directory from Output to html to make it easier to package
the help as an Eclipse plugin (for more, see “Packaging and Installing the Generated
Help” on page 9).

NOTE: It turns out this isn’t necessary, but since I’ve changed it, I’ll leave it that way.

! Removed the TOC navigation button from normal.asp, since Eclipse displays the TOC
in a separate pane; I left the Index button in and made it match the Agitator look. To
make this work, I made the following changes:

" Modified BP80PageASP_Navigation to remove image for TOC button and to
point to the Next/Previous images used in the JavaHelp version.

" Modified BP80PageASP_SetPrevNext to return false if the previous page is the
TOC, so that the opening topic won’t have a “previous” page to navigate to.

! Made the changes described in the next section, “Generating the Table of Contents,” to
generate toc.xml in the format expected by Eclipse.

Generating the Table of Contents

Eclipse uses the following format for the Table of Contents, by default in a file called toc.xml:

<toc label="Tasks">
<topic label="Plain Stuff">

<topic label="Task1" href="html/tasks/task1.html"/>
<topic label="Task2" href="html/tasks/task2.html"/>

</topic>
<topic label="Fun Stuff" >

<topic label="Task3_1" href="html/tasks/task3_1.html"/>
<topic label="Task3_2" href="html/tasks/task3_2.html"/>

</topic>
</toc>

To generate a TOC in this format, no changes were needed to the FrameMaker source. All
changes happened in the WWP template; specifically:

! Changed the name of the generated TOC file from toc.html to toc.xml (in WWP
project properties).

4 ! Generating Help for Eclipse Plug-ins

! Modified the following TOC building blocks based on corresponding ones in the
JavaHelp template:

" BP80TOCWriteIterator, to generate individual entries for the Eclipse TOC.
Here’s the code, with Eclipse-specific stuff in bold:
$COMMENT(
 Emit Eclipse TOC in valid XML format--modified from JavaHelp template.
);\

\
@INC_COUNTER(var_TOCIteratorDepth);\

\
$LOOP($GET_COUNTER(var_TOCIteratorDepth);, BP80_Spaces);\
<topic\
 label="$KEYEDLISTITER_ARRAY(3);" \
 href="$KEYEDLISTITER_ARRAY(2)[$CHARSET;, " \" " , "
BP80_EscapeIterator" , replace];" \

\
$IF_GREATER($GET_KEYEDLISTTOTAL(var_TOC,
$KEYEDLISTITER_ARRAY(1););, 0,

 >
$ITERATE_KEYEDLIST(BP80TOC_WriteIterator, var_TOC,
$KEYEDLISTITER_ARRAY(1););\

$LOOP($GET_COUNTER(var_TOCIteratorDepth);, BP80_Spaces);\
</topic>
,
 \ />
);\
\
@DEC_COUNTER(var_TOCIteratorDepth);\

" BP80TOCWrite, to write the toc.xml file. Here’s the code:
$COMMENT(
 Writes Eclipse TOC XML file--modified from JavaHelp template.
);\
\
$BP80TOC_Collapse;\
\
@WRITE(overwrite, host, $GET_PROJECTPROP(TOCName);,
<?xml version='1.0' encoding='$CHARSET;' ?>
<?NLS TYPE="org.eclipse.help.toc"?>
<toc label="$PROJECTNAME;" topic="$UMEclipseOpeningTopic;">
$ITERATE_KEYEDLIST(BP80TOC_WriteIterator, var_TOC, 0);</toc>
);\

I created the user macro UMEclipseOpeningTopic with the value of the first
generated topic in the project:
help-opening-topic-1.html

The purpose of this is to display the opening topic when a user selects Agitator for
Eclipse from the combined Eclipse help TOC, rather than displaying no topic and
having this be the first topic inside the Agitator help.

NOTE: There is probably a more dynamic way to set the name of the opening topic
to display; for now, I’ve hard-coded it in the user macro.

Generating Help for Eclipse Plug-ins ! 5

Supporting Context-Sensitive Help (Infopops)

Eclipse help uses popup windows, known as infopops, to display context-sensitive help. Users
press F1 to get context-sensitive help for the Eclipse view, editor, or dialog box that has focus.
Each infopop has a brief description of the GUI control, followed by a list of links to topics in
the help for the associated plug-in. For example:

NOTE: For each infopop entry in the FrameMaker document, I’m using a sidehead
paragraph (mapped to NoOutput in the WWP template) to identify which GUI control
(Eclipse view or dialog box) the infopop is describing.

Required Output

Eclipse expects the definitions of infopop topics to be in a file called contexts.xml, with the
following format:

<contexts>
<context id="panic_button">

<description>Brief description of this control.</description>
<topic href="file_name_link1.html" label="Link1 Topic Title"/>
<topic href="file_name_link2.html" label="Link2 Topic Title"/>

</context>
. . .

</contexts>

FrameMaker Setup

The modified WWP template can generate topics in this format using the following
FrameMaker constructs:

! Markers:

" EclipseContextsStart marker, to trigger deleting any existing contexts.xml file
and write the opening lines:
<?xml version='1.0' encoding='ISO-8859-1' ?>
<contexts>

The template ignores the content of this marker.

" EclipseContext marker, analogous to TopicAlias markers.

Encountering this marker opens a context element in the contexts.xml file, with
the marker text as the value of the id attribute.

6 ! Generating Help for Eclipse Plug-ins

" EclipseContextsEnd marker, to trigger adding the closing </contexts> tag.

The template ignores the content of this marker.

! EclipseTopic paragraph tag, whose content goes into a description element inside the
context element.

! EclipseLink paragraph tag, with a cross-reference to a related topic, which becomes a
topic element inside the context element.

" The text of this paragraph would be the value of the label attribute.

" The destination of the cross-reference would be the value of the href attribute.

! Separate paragraph tag EclipseLinkLast, to add the final link and also close the context
element.

Using the FrameMaker Markers and Paragraph Tags

To create the source for Eclipse infopops, place the text at the end of an existing Frame
chapter file, not in a separate file, and tag the entire section with the Eclipse condition tag. If
it’s in a separate file, WWP will generate an empty topic corresponding to that file, even if
there’s no content in it to populate the topic page.

Place all of the infopop topics together, in a block with nothing else in it, following these
guidelines:

1. At the beginning of the infopop section, in an empty Body paragraph, place an
EclipseContextsStart marker.

You can put any text you want in the marker, because WWP only uses the marker as a
flag and ignores the marker text.

2. For each infopop topic:

a. As internal documentation, start with a SideHead Text paragraph, describing what
view or dialog box this infopop is associated with.

In the WWP template, SideHead Text paragraphs are mapped to No Output.
b. Create a paragraph tagged EclipseTopic, with a brief description of the view or

dialog box.

c. Go back to the beginning of the EclipseTopic paragraph and add an
EclipseContext marker with the ID for this view or dialog box—coordinate with
the GUI developer responsible for that construct to get the ID.

d. Add one or more EclipseLink paragraphs with cross-references to relevant topics
elsewhere in the help.

e. Use the last EclipseLinkLast paragraph tag for the last cross-reference paragraph. If
there’s only one cross-reference, use EclipseLinkLast for it.

Generating Help for Eclipse Plug-ins ! 7

3. At the end of the infopop section, in an empty Body paragraph, place an
EclipseContextsEnd marker.

You can put any text you want in this marker also, because WWP uses it as only a flag
and ignores the marker text.

WWP Macros

To process the FrameMaker constructs listed in the previous section, the WWP template
contains the following marker and paragraph macros. Notice the hard returns before the
closing parentheses of each @WRITE macro, to ensure line breaks in the generated XML.

The details appear in the following subsections:

! Markers

! Paragraph Styles

! User Macros

Markers
The WWP template has the following new marker macros:

! EclipseContextsStart marker:

$COMMENT(
 Clears existing contexts.xml file and starts a new one.
);\
@DELETE(host,$UMEclipseContextsFileName;);\
@WRITE(append, host, $UMEclipseContextsFileName;, <?xml
version='1.0' encoding='ISO-8859-1' ?>
);\
@WRITE(append, host, $UMEclipseContextsFileName;, <contexts>
);

! EclipseContext marker:

@WRITE(append, host, $UMEclipseContextsFileName;, \ \ <context
id="$DATA;">
);

! EclipseContextsEnd marker:

$COMMENT(
 Adds final closing tag to $UMEclipseContextsFileName; file.
);\
@WRITE(append, host, $UMEclipseContextsFileName;, </contexts>);

8 ! Generating Help for Eclipse Plug-ins

Paragraph Styles
The WWP template has the following new paragraph style macros:

! EclipseTopic paragraph:

@WRITE(append, host, $UMEclipseContextsFileName;, \ \ \ \
<description>$DATA(raw);</description>
);

! EclipseLink paragraph:

@WRITE(append, host, $UMEclipseContextsFileName;,
$UMEclipseInfopopLink;
);

! EclipseLinkLast paragraph:

@WRITE(append, host,$UMEclipseContextsFileName;,
$UMEclipseInfopopLink;
);\
@WRITE(append, host,$UMEclipseContextsFileName;, \ \ </context>
);

User Macros
The marker and paragraph styles use the following new user macros:

! UMEclipseContextsFileName, with the name of the XML file containing the infopop
topic definitions, defined as:

contexts.xml

! UMEclipseInfopopLink, with the code to generate the XML code for infopop links
(following the description in each infopop entry), defined as:

\ \ \ \ <topic href="$LINKFILE(html, basename);#wp$LINKTAG;"\
label="$DATA(raw);"/>

Order of Processing

Here’s the basic flow in pseudo-code.

Start writing Eclipse
Infopop topics.

1. Encounter an EclipseContextsStart marker:

a. Delete existing contexts.xml file.

b. Write the XML declaration and opening <contexts> tag in a brand-new file.
Process each Eclipse
Infopop topic.

2. Encounter EclipseContext marker:

a. Write the opening <context> tag with marker text as id attribute.

b. Encounter an EclipseTopic paragraph tag; write the <description> element with
the paragraph contents.

c. Encounter an EclipseLink paragraph tag, then write a <topic> element with the
link destination and the paragraph text.

Generating Help for Eclipse Plug-ins ! 9

d. Repeat step 2c until encountering EclipseLinkLast paragraph tag, then write the
last <topic> element, followed by the closing </context> tag.

3. Repeat step 2 until encountering an EclipseContextsEnd marker.

Finish writing Eclipse
Infopop topics.

4. Write the closing </contexts> tag.

NOTE: This flow assumes that all Eclipse infopop source is in a block together, with nothing
else intervening. It is the responsibility of the writer to ensure that this structure is
maintained.

Packaging and Installing the Generated Help

For Agitator 2.0 the help will be packaged as a separate plug-in. We can write the plugin.xml
file once by hand instead of trying to have WWP generate it.

NOTE: The following link http://www-106.ibm.com/developerworks/opensource/library/
os-echelp/ was the most helpful in figuring out how to package and install the help plug-in.

Plug-in Definition

The plug-in description contains (with substitutions for the right values where needed), in a file
called plugin.xml:

<?xml version="1.0"?>
<plugin name="Agitator Help"

id="com.agitar.help"
version="2.0"
provider-name="Agitar.com">

<runtime/>
<extension point="org.eclipse.help.toc">

<toc file="toc.xml" primary="true"/>
</extension>
<extension point="org.eclipse.help.contexts">

<contexts name="contexts.xml"/>
 </extension>

</plugin>

The way to provide the help files is to zip the generated files into a doc.zip file. This file goes
in the plug-in directory (named id_version, based on the attributes in on the plugin element
in plugin.xml). So, the plug-in home directory, in this case com.agitar.help_2.0, should
contain:

! plugin.xml

! toc.xml

! contexts.xml

! doc.zip with the HTML files and supporting files

http://www-106.ibm.com/developerworks/opensource/library/os-echelp/
http://www-106.ibm.com/developerworks/opensource/library/os-echelp/

10 ! Generating Help for Eclipse Plug-ins

WWP Support

To package the generated help, I’ve a created a set of WWP building blocks and user macros,
and added the building block BAZipEclipseFilesForPlugin to the end of
BZOnConvertAllEnd in the customized WWP template.

Building Blocks
The building block BAZipEclipseFilesForPlugin copies the generated TOC and contexts
files to a temporary directory called plugin (a sibling of the WWP output directory), zips the
remaining files in the output directory to a file called doc.zip, and then moves doc.zip to the
plugin directory. After testing, the contents of the plugin directory can be copied to the
correct subdirectory of the Eclipse plugin directory.

Here’s the code:

$COMMENT(
 Move toc and contexts files to plugin dir.
);\
@MOVE(overwrite, host, toc.xml, ..$SEP;plugin$SEP;toc.xml);\
@MOVE(overwrite, host, $UMEclipseContextsFileName;,
..$SEP;plugin$SEP;$UMEclipseContextsFileName;);\

$COMMENT(
 Zip remaining files into doc.zip.
);\
@EXECUTE($UMZipFilesCommand;);\

$COMMENT(
 Move doc.zip to plugin dir.
);\
@MOVE(overwrite, host, doc.zip, ..$SEP;plugin$SEP;doc.zip);

User Macros
And the supporting user macros:

! UMEclipseContextsFileName, described in “User Macros” on page 8

! UMZipFilesCommand, defined as:

c:\\cygwin\\bin\\zip -r doc *

Generating Help for Eclipse Plug-ins ! 11

Installing the Help Plug-in

To install the plug-in:

1. Close Eclipse.

2. Place the directory with the plug-in contents in the plugin directory of an Eclipse
installation.

3. Restart Eclipse.

4. Select Help>Help Contents.

If all went well, the help plug-in appears in the Eclipse help browser. (It took me a few
tries to get the help to show up, mostly related to the name I chose for the plug-in
directory under eclipse/plugins.)

	Generating Help for Eclipse Plug-ins
	About Eclipse Help
	WebWorks Conversion Template Changes
	Generating the Table of Contents
	Supporting Context-Sensitive Help (Infopops)
	Required Output
	FrameMaker Setup
	Using the FrameMaker Markers and Paragraph Tags
	WWP Macros
	Markers
	Paragraph Styles
	User Macros

	Order of Processing

	Packaging and Installing the Generated Help
	Plug-in Definition
	WWP Support
	Building Blocks
	User Macros

	Installing the Help Plug-in

