
Getting Started: Semantic Mediation in Action 1

1 Resolving Schematic Conflicts

last updated: November 19, 2002 9:13 am

Information conflicts occur when two or more parties:

Use different syntax to represent the same information

Use different structures to represent the same information

Do not recognize different representations of the same information

Do not agree on common representations of the same information

The Modulant Contextia Interoperability Platform can solve the following kinds 
of information conflicts:

Syntactic conflicts refer to differences in the format of data values.

Schematic conflicts refer to differences in data structures across applications.

Semantic conflicts refer to differences in the meaning of data.

Contextual conflicts refer to differences in the factors that determine the 
meaning of data.

When more than one application must share information as part of an identified 
business process, an interoperability architect working with these applications is 
bound to encounter one or more of these types of conflicts. As you solve these 
problems for different interoperability environments, you will become more 
familiar with the techniques uses to solve each type of conflict.

This tutorial demonstrates one solution to aggregation conflicts, a type of schematic 
conflict.

This tutorial covers the following topics:

A Closer Look at Schematic Conflicts

Introducing the Sample Applications

Developing the Mapping Strategy

Completing the Context Maps

Performing an Interoperability Run



1 Resolving Schematic Conflicts

2 Getting Started: Semantic Mediation in Action

A Closer Look at Schematic Conflicts
Schematic conflicts refer to differences of schema, data, or relationships across 
application data sets. Interoperability architects encounter schematic conflicts of 
the following types:

Data type: When different applications use different data types for the same 
data values.

For example, one application might use a text string to represent a date while 
another application uses a built-in date/time type.

Labeling: This kind of conflict can show up in two situations:

When different labels refer to the same attribute.
For example, one application can have a data field called Employee_ID 
when another one has a field called Social_Security_Number for the same 
purpose.
When the same label identifies different attributes.
For example, two applications can have data fields called Order_Date, but 
in one application it refers to the date an order was placed and in the 
other one it refers to the date an order was received.

Aggregation and structure: When applications use different data structures to 
represent equivalent information.

This is the kind of conflict you will learn to solve in this tutorial.

Introducing the Sample Applications
Figure 1 shows an example of an aggregation conflict between two application 
data structures. For simplicity, this example shows the same data values in each 
application’s format; in a real interoperability environment, of course, each 
application would have different data values.

In this example, the architects of each application have made different design 
choices. The designers of Application 1 encoded information about both cars and 
trucks in a single logical entity. In contrast, the designers of Application 2 chose to 
store information about cars separately from information about trucks. More 
specifically:

In Application 1, the type of vehicle is explicit, in the value of the type field. 

In Application 2, the type of vehicle is implicit, only available in the name of 
each logical entity. 



Introducing the Sample Applications

Getting Started: Semantic Mediation in Action 3

Figure 1: Example of an Aggregation Conflict

In an interoperability environment comprising these two sample applications, 
consider that Application 1 contains data needed by Application 2. This places 
Application 1 in the role of information provider and Application 2 in the role of 
information consumer.

To solve the aggregation conflict, you need two context maps, one for each 
application. A context map describes the logical structure of a set of application 
data, along with the context of the data and the relationships among the data 
elements.

The next section shows the mapping strategy that you will use to create these 
context maps.

Application 1: Application 2:

Cars and trucks are aggregated in a 
single entity with a type attribute to 
distinguish them.

 Cars and trucks are grouped in two 
different entities—no type attribute is 
needed.



1 Resolving Schematic Conflicts

4 Getting Started: Semantic Mediation in Action

Developing the Mapping Strategy
Figure 2 shows an overview of the thought process involved in solving 
interoperability problems. Each stage corresponds to one of the methods in the 
Modulant methodology, known as the Context-based Information Interoperability 
Methodology (CIIM, pronounced simm).

Figure 2: CIIM Methods and Procedures

In this demo scenario, you will only create context maps; everything else you 
need has been provided for you.

A mapping strategy defines how you, as an interoperability architect, will map 
data elements from each application to an abstract representation, known as an 
Abstract Conceptual Model (ACM). The abstract representation acts as a mediator 
between the different application structures and contexts.

Developing a mapping strategy includes the following steps:

Analyzing Sample Data

Identifying Common Concepts



Developing the Mapping Strategy

Getting Started: Semantic Mediation in Action 5

Analyzing Sample Data
The first step in developing a mapping strategy is to identify the meanings of the 
data from each application. To do this, you examine actual data from each 
application, in collaboration with domain experts for each application, who are 
familiar with how those applications are used.

For the example in Figure 1, sample application data in XML looks like this (using 
the same data values for both applications to allow easy comparison of the data 
structures):

Notice that both applications describe both cars and trucks. In Application 1 the 
type of vehicle is the value of the type attribute of the XML element car. In 
Application 2 the type of vehicle shows only in the name of the XML element that 
contains the data values, but not in the data values themselves. The first thing to 
notice here is the actual data values used by Application 1, car and truck. You will 
use these values, spelled exactly the way Application 1 spells them, as meta-data 
in the context map for Application 2. 

This brings up a critical point in designing interoperability solutions: neither of 
the domain experts for these applications needs to know about how the other 
application represents specific data values. But, in your role of interoperability 
architect, you must be aware of this information to create a mediation layer that 
will enable the Modulant Contextia Interoperability Server to accommodate the 
context of all of the applications in the interoperability environment.

So, in discussions with domain experts for each application, you learn that both 
applications store information about cars and trucks, specifically, an identifier (the 
code), the model of the vehicle (the name), and whether it is a car or a truck (the 
type).

Application 1: Application 2:

<autodb>
<car code="RF234" type="car">

<name>toyota camry</name>
</car>
<car code="RF235" type="car">

<name>saab 900</name>
</car>
<car code="RF6735" type="truck">

<name>nissan pathfinder</name>
</car>
<car code="RF784" type="truck">

<name>chevy avalanche</name>
</car>

</autodb>

<autodb>
<cars>

<car code="RF234" name="toyota 
camry"/>

<car code="RF235" name="saab 900"/>
</cars>
<trucks>

<truck code="RF784" name="chevy 
avalanche"/>

<truck code="RF6735" name="nissan 
pathfinder"/>

</trucks>
</autodb>



1 Resolving Schematic Conflicts

6 Getting Started: Semantic Mediation in Action

Identifying Common Concepts
Once you understand the data values in each application, you are ready to 
identify the common concepts that these applications share. To do this, you 
examine the high-level concepts available in your Abstract Conceptual Model. 
The Modulant ACM contains concepts such as class, person, product, and 
organization. In this case, cars and trucks can all be considered as products. 

Figure 3 shows the high-level mapping strategy for this interoperability 
environment. The product entity in the Modulant ACM has attributes that 
represent a unique identifier, the product name, and the type of product.

Figure 3: Basic Mapping Strategy for Application 1 and Application 1
 

To solve the aggregation conflict, you use each application’s context map to 
specify whether a vehicle is a car or a truck:

For Application 1, by using the value of the type field.

For Application 2, by supplying this information as meta-data in the form of 
context strings.

Using the high-level strategy, Figure 4 shows the correspondences between the 
data elements in each application and the attributes of the abstract product entity.



Completing the Context Maps

Getting Started: Semantic Mediation in Action 7

Figure 4: Detailed Mapping Strategy for Application 1 and Application 1

Completing the Context Maps
Now that you have identified the basic concepts represented by the application 
data in this interoperability environment, you are ready to create the context 
maps. You will add mapping statements and context maps to create two context 
maps, which you can use to perform an interoperability run.

Completing the context maps involves:

Starting the Context Mapper

Completing the Context Map for Application 1

Completing the Context Map for Application 2



1 Resolving Schematic Conflicts

8 Getting Started: Semantic Mediation in Action

Starting the Context Mapper
The Contextia Context Mapper enables you to define one or more context maps 
for an application schema. The main window shows you the data elements in 
your application along with the parts of the context map as you develop it. In 
addition, you can view all or part of the structure of the Abstract Conceptual 
Model that contains the mapping targets for your data elements. 

To start the Contextia Context Mapper, do one of the following:

From the Windows desktop, select Start>Programs>Modulant Contextia 
Workbench>Contextia Contextia Context Mapper.
On a UNIX system, go to the bin subdirectory of your Workbench installation 
directory, and run the shell script called cxmapper.

The Contextia Context Mapper starts in its own window:



Completing the Context Maps

Getting Started: Semantic Mediation in Action 9

The main window of the Context Mapper has three regions:

The ATS Schema region lists the data elements in your application and the 
data elements that are part of the current context map. In this region, you can 
view and change the properties of data elements and add data elements to the 
domain of a context map.

The Abstract Conceptual Model region lists the entities in the abstract 
representation that contains the mapping targets for the data elements in your 
application.

The Structure Mapping region displays the structure mapping for a context 
map. The structure mapping is a set of instances of Abstract Conceptual 
Model entities and their relationships that together provide the context for 
that data elements that appear in the context map.

Completing the Context Map for Application 1
The mapping process expects a root data element for each logical entity. The root 
data element is one that connects a set of other data elements, usually the unique 
identifier of a logical entity. Root data elements serve as anchor points for 
mapping related data elements; often they are the primary keys of database 
tables, or other unique identifiers.

To start your mapping, you specify a root data element and its mapping target. 
Application 1 has one logical entity, car. The root data element is the key field 
code. Remember that the abstract concept that represents cars is product. 

To complete the context map for Application 1:

1 Select File >Open.

The Context Mapper starts looking in the cxm directory of your Workbench 
installation.

2 In the demo1 subdirectory, select cars-trucks1-start.cxm and click Open.



1 Resolving Schematic Conflicts

10 Getting Started: Semantic Mediation in Action

The ATS Schema region shows the data elements in this context map (in the 
Map Domain section) and the Abstract Conceptual Model region shows the 
common concepts you can use for mapping:

3 In the Map Domain section, expand the logical entity car to see its attributes.

Tip: To expand or collapse a node, click the icon to the left of its name.

4 To specify code as the root data element:
a In the Map Domain section, select code.

Notice that several of the toolbar buttons on the toolbars are now active.
b On the mapping toolbar, click the Set Root button.

The icon next to code changes to show that it has been identified as a root 
data element.

5 To map the data element code:
a In the Map Domain section, select code if it is not already selected.
b In the Abstract Conceptual Model region, scroll to the product entity and 

expand it.
c Select the id attribute of product.
d On the mapping toolbar, click the Create Mapping Statement button.



Completing the Context Maps

Getting Started: Semantic Mediation in Action 11

The Finish Mapping Statement dialog box appears:

e Next to Direction, accept the default value Input/Output.
f Next to Entity Usage, accept the default value New Entity Usage.

The entity usage identifies a single occurrence of an ACM entity in a 
structure mapping. Because the structure mapping is empty at this point, 
you are adding a new occurrence of the product entity.

g Click OK.
The Context Mapper creates a mapping statement specifying product.id 
as the mapping target for code. 

Note: Names of elements of the Abstract Conceptual Model use the 
notation entity_name.attribute_name; for example, product.id.

In the Map Domain section, you can see the new mapping statement 
below the root data element:

The product entity has a number 1 after it. This number is the entity 
usage, and indicates that this is the first occurrence of product in this 
structure mapping.



1 Resolving Schematic Conflicts

12 Getting Started: Semantic Mediation in Action

The new mapping statement also appears in the Abstract Conceptual 
Model region, below product.id, the mapping target you chose:

h In the Structure Mapping region, expand the product node at the top of 
the element structure:



Completing the Context Maps

Getting Started: Semantic Mediation in Action 13

In the top pane, the element structure shows the context associated with a 
single mapping statement. In the bottom pane, the map structure shows the 
entire structure mapping for a context map. As you add entities to each 
element structure, they all appear in the map structure.

6 To map the name attribute of car:
a In the Map Domain section, select name.

Remember that name indicates the name of this car model.
b Drag name all the way to the Structure Mapping section, to the name 

attribute under product[1].
The Context Mapper adds a new mapping statement under name in both 
the Map Domain section and the Abstract Conceptual Model region, and 
adds a link from product.name to the name attribute of car.
That’s all you need to do to map name.

7 To map the type attribute of car:
a In the Map Domain section, select type.

Remember that type identifies whether this is actually a car or a truck.
b Drag type all the way to the Structure Mapping section, to the 

context_discipline_type attribute under product[1].
You can use context_discipline_type attribute of product to specify what 
kind of product this is. The type attribute of car provides this information.
That’s all you need to do to map type.

The structure mapping should now look like this:

8 To save your changes, select File>Save As.

The Context Mapper starts looking in the cxm directory of your Workbench 
installation.

Note: The file you originally opened, cars-trucks1-start.cxm was set to read-
only as part of this installation. Modulant recommends that you save your 
changes in a separate file, so that you or someone else can do this exercise 
again starting with the same files.



1 Resolving Schematic Conflicts

14 Getting Started: Semantic Mediation in Action

9 Go to the demo1 subdirectory and type a new name, such as cars-trucks1.cxm, 
and click Save.

That’s all you have to do for the first context map. Now you’re ready for the 
next one.

Tip: The file cars-trucks1-complete.cxm in the cxm\demo1 subdirectory of 
your Workbench installation contains a finished copy of the context map you 
just created.

Completing the Context Map for Application 2
Completing the context map for Application 2 follows the same basic steps as 
completing the context map for Application 1, with a few differences:

Application 2 has two logical entities, which you map separately.

Each logical entity has a root data element.

Your map structure will have two copies of product this time, one for cars and 
one for trucks.

For each instance of product, you provide the implicit information about the 
data—whether a data value is a car or a truck— as a context string.

To complete the context map for Application 2:

1 Select File >Open.

The Context Mapper starts looking in the cxm directory of your Workbench 
installation.

2 In the demo1 subdirectory, select cars-trucks2-start.cxm and click Open.
3 In the Map Domain section, expand both car and truck.

Notice that each logical entity has two attributes, code and name. In this 
application, there are no data elements that identify whether a vehicle is a car 
or a truck. At this point, this information only appears in the names of the 
entities.

4 To map the data elements in the car entity:
a Following the instructions in step 4 on page 10, set code as the root data 

element of the car entity.
b Following the instructions in step 5 on page 10, map the code attribute of 

car to product[1].id.
c In the Map Domain section, select the name attribute of car and drag it to 

product[1].name in the Structure Mapping region.
Because the data structures for this application contain no explicit 
indication of the type of vehicle, you must specify this as meta-data in the 
form of a context string. 

d In the element structure, select product[1].context_discipline_type.



Completing the Context Maps

Getting Started: Semantic Mediation in Action 15

The Context field in the Attribute Properties section at the bottom of the 
Structure Mapping region becomes active:

e In the Context field, type car to specify that all of the data values for this 
logical entity represent cars.
Remember that the data values in Application 1 for the type attribute of 
the car entity were car and truck. To accommodate the context of both 
applications, you must match the spelling of those data values when you 
enter context strings.

f Click Apply.
The context string you entered appears in the structure mapping:

5 To map the data elements in the truck entity:
a Following the instructions in step 4 on page 10, set code as the root data 

element of the truck entity.
Because truck is a separate logical entity, you will map its data elements 
to a new copy of the product entity from the ACM: product[2].

b Following the instructions in step 5 on page 10, map the code attribute of 
truck to product[2].id.

c In the Map Domain section, select the name attribute of car and drag it to 
product[2].name in the Structure Mapping region.

d In the element structure, select product[2].context_discipline_type.
e In the Context field, type truck to specify that all of the data values for 

this logical entity represent trucks.
f Click Apply.



1 Resolving Schematic Conflicts

16 Getting Started: Semantic Mediation in Action

6 To save your changes, select File>Save As.

The Context Mapper starts looking in the cxm directory of your Workbench 
installation.

7 Go to the demo1 subdirectory and type a new name, such as cars-trucks2.cxm, 
and click Save.

Tip: The file cars-trucks2-complete.cxm in the cxm\demo1 subdirectory of 
your Workbench installation contains a finished copy of the context map you 
just created.

Now you are ready to test the context maps with sample data.

Performing an Interoperability Run
To test your context maps, you will perform an interoperability run with 
Application 1 as the source and Application 2 the target application. To do this, 
you will use sample data provided as part of your Workbench installation.

To Technical Reviewers: Until the Web interface is available, this section uses the high-level design and 
improvises about what controls will actually be in the final version. 

To perform a test interoperability run:

1 In a browser window, go to <URL>.

The login page appears:

2 Enter the user name and password you used when you downloaded the 
evaluation version of Modulant Contextia, and click OK.

3 On the evaluation home page, click Upload to test your mappings.



Performing an Interoperability Run

Getting Started: Semantic Mediation in Action 17

The upload page appears:

4 Next to the Source Context Map field, click Browse.
5 In the demo1 subdirectory, select the file in which you saved the 

Application 1 context map and click Open.
6 Next to the Target Context Map field, click Browse.
7 In the demo1 subdirectory, select the file in which you saved the if context 

map and click Open.
8 To start the interoperability run, click Go.

The Interoperability Server uses the context maps you provided to transform 
data in the format used by Application 1 into the format used by 
Application2. 

When the interoperability run is finished, the get results page appears:

9 To see the source data from Application 1 and the target data created for 
Application 2, click View Source and Target Data.



1 Resolving Schematic Conflicts

18 Getting Started: Semantic Mediation in Action

On the view results page, the XML data should look like this:

Congratulations! You’ve just completed a successful interoperability project.

Do you want to try another one? 

Scenario 2: Resolving Semantic Conflicts

Source: Application 1 Target: Application 2 

<autodb>
<car code="RF234" type="car">

<name>toyota camry</name>
</car>
<car code="RF235" type="car">

<name>saab 900</name>
</car>
<car code="RF6735" type="truck">

<name>nissan pathfinder</name>
</car>
<car code="RF784" type="truck">

<name>chevy avalanche</name>
</car>

</autodb>

<autodb>
<cars>

<car code="RF234" name="toyota 
camry"/>

<car code="RF235" name="saab 900"/>
</cars>
<trucks>

<truck code="RF784" name="chevy 
avalanche"/>

<truck code="RF6735" name="nissan 
pathfinder"/>

</trucks>
</autodb>


	1� Resolving Schematic Conflicts
	A Closer Look at Schematic Conflicts
	Introducing the Sample Applications
	Developing the Mapping Strategy
	Analyzing Sample Data
	Identifying Common Concepts

	Completing the Context Maps
	Starting the Context Mapper
	Completing the Context Map for Application�1
	Completing the Context Map for Application�2

	Performing an Interoperability Run


