ﬁ =|\/|nr\| I ANIT"
IVINVJLJUL/\IN |

System Overview

Version 2.1
August 2002

System Overview, version 2.1
Copyright © 2001-2002 Modulant Solutions, Inc. All rights reserved.
August 2002, Version 2.1

Ownership of Materials. This manual, as well as the software described in it, is furnished under
license and may be used or copied only in accordance with the terms of such license. The contents of
this manual are furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Modulant. Modulant assumes no responsibility or liability for
any errors or inaccuracies that may appear in this book.

This manual is protected by copyright and distributed under licenses restricting its use, copying,
translation, distribution, and decompilation. Except as permitted by such licenses, no part of this
manual may be reproduced in any form by any means without prior written authorization of
Modulant. Except as expressly provided herein, Modulant grants no express or implied rights to
anyone under any patents, copyrights, trademarks, trade names, or trade secret information with
respect to the contents of the manual.

Ownership of Trademarks. The trademarks, service marks, product names, company names or logos
and other marks displayed in the manual are the property of Modulant Solutions, Inc. or other third
parties. Any use of trademarks, service marks, product names, company names or logos, and other
marks, including the reproduction, modification, distribution, or republication of same without the
prior written permission of the owner is strictly prohibited.

Modulant, the Modulant logo, and Contextia are trademarks of Modulant Solutions, Inc. Other
trademarks, service marks, trade names and company logos referenced are the property of their
respective owners.

Disclaimers. THIS MANUAL IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID. FURTHER MODULANT DOES NOT WARRANTY,
GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF
THE USE, OF THE WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Notice to U.S. Government Users. All Modulant products and publications are commercial in
nature. The software and documentation are “commercial items,” as that term is defined at 48 C.ER.
§2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software
Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.E.R. §227.7202, as applicable.
Consistent with 48 C.ER. §12.212 or 48 C.E.R. §§227.7202-1 through 227.7202-4, as applicable, the
Commercial Computer Software and Commercial Computer Software Documentation are licensed to
U.S. Government end users (A) only as Commercial Items and (B) with only those rights as are
granted to all other end users pursuant to the terms and conditions set forth in the Modulant standard
commercial agreement for this software. Unpublished rights reserved under the copyright laws of the
United States.

Table of Contents

Listof Figures. i i e et e e e vii
Preface o e e e e e e e iX
Who Should Read this Guide? e ix
Conventions Used in this Guide. e e e X
What'sin this Guide?t e e xi
Related DOCUMENTS. . . . oot e xi

1 Introducing Information Interoperability 1
Enabling Information Interoperability............. oL 2
Interoperability is About Communication oo oo 3
The Role of ConteXt.ot e e e e e e 6

2 Introducingthe CIIM i e 7
Underlying Principles. 7
The CIIM Framework. e e e 8
CIIM ArchitectUre. oottt e e e e e 9
Data Elements. oot 10
Information Units.ottt e 10

Map Domainso 10

The CIIM Methods oot e 11
Context DISCOVEIY 11
Context Formalization.t 12
Context Accommodation ittt 12

3 The Interoperability Process. 15
Design-time Process: Applyingthe CIIM 15
Develop an Interoperability Strategyl 16

About Abstract Conceptual Models.o o ool 17

About Application Transaction Sets (ATSs).......... 18

Describe Application Data FormatsinDataMaps................................. 19

System Overview

Develop ApplicationSchemas.............. oo 19

Create Data Maps to Describe Physical Structures. 20
Capture Application Contextin ContextMaps 20
AboutContext Map Files 20

The Mapping Process 21
Run-time Process: Achieving Information Interoperability. 23
Configure Interoperability Run. 23
Perform Interoperability Run 24
Retrieve Target Data in Native Format and Verify Results 24

4 Modulant Contextia Tools and Components 25
Design-time Tools: The Interoperability Workbench 26
The Data Mapper. ... 26
The Context Mapper. 27
FirstSTEP XG and FirstSTEPEXML. o 28
Run-time Tools: The Interoperability Server and its Client Tools 29
The Interoperability RunConsole 29
The Interoperability CL 30
The Interoperability Server Administrator................... 31
The Interoperability APL 33
Inside the Interoperability Server 33
Server COomMpOnents. o i 33
Flow of an Interoperability Run 36

5 An Interoperability Example o i, 39
Introducing the Sample Applications i 39
Developing a Mapping Strategy i 40
Creating the Mapping Specifications oo 42
Describing the Data. 42
Describing the Context. 45
Performing an Interoperability Run 47
6 Architectural Considerations. 51
Synchronous vs. Asynchronous Interoperability Runs 51
Synchronous Operation............... . i 51
Asynchronous Operation and the JobQueue......... 52
Remote vs. Embedded Servers............. 52
Remote Server Using JMS 53
Remote Server Using Web Servicesand SOAP 54
Embedded Server 56

iv System Overview

System Overview v

vi System Overview

List of Figures

Figure 1: Request for Information Across Related User Communities....................... 4
Figure 2: Response to Request for Information............... 5
Figure3: TheCIIM Methods 8
Figure 4: Aggregations of Data and Information................ 9
Figure 5: Design-timeProcess.............l 16
Figure 6: Mapping Data Elementstoan ACM 21
Figure 7: Enabling Information Interoperability 23
Figure 8: Data Mapper Main Window 27
Figure 9: Context Mapper Main Window i 28
Figure 10: Interoperability Run Console Main Window 30
Figure 11: Interoperability CL Usage Message.................o 31
Figure 12: Interoperability Server Administrator Main Page............................... 32
Figure 13: The Modulant Contextia Interoperability Server................................ 34
Figure 14: Interoperability Flow 36
Figure 15: USToursand Euro Travel...... L. 40
Figure 16: Mapping Strategy for US Tours and Euro Travel 42
Figure 17: Format Conversion to Split start_dateintoParts................................ 45
Figure 18: The Interoperability APIJob Queue. 52
Figure 19: Using the JMS Conduit i 54
Figure 20: Using the SOAP Conduit............. i i i 55
Figure 21: Using an Embedded Server........... 56

System Overview vii

List of Figures

viii System Overview

Preface

The Modulant Contextia Interoperability Platform is Modulant Solutions, Inc.’s
revolutionary toolset for creating information interoperability.

The System Overview outlines how the Modulant Contextia platform enables
information interoperability, with descriptions of the overall work flow, the
individual tools and components that are part of this platform, and examples of
how interoperability architects use these tools to make interoperability a reality.

This preface contains the following topics:
® Who Should Read this Guide?

m Conventions Used in this Guide

m What’s in this Guide?

m Related Documents

Who Should Read this Guide?
The audience for the Modulant Contextia Interoperability Platform includes
interoperability architects, domain experts, and software developers.

m Interoperability architects describe application data structures in data maps,
create context maps from those data structures to an Abstract Conceptual
Model, and perform interoperability runs. During this process,
interoperability architects retain an overall view of all of the applications in
an interoperability environment.

m Domain experts work with interoperability architects to help them
understand both the structure and the context of their community’s data.

m Java programmers can use the Interoperability API to automate the process of
transforming data from one or more data sources to another.

The documentation set is intended to serve as a supplement to the material
available in the Modulant training program; for information and a course catalog,
visit www.modulant.com/partners/training.shtml.

This guide assumes that you are familiar with the following topics:
®m Your operating system (Windows or Solaris) and its file system

m Data modeling and XML representation of data

System Overview ix

http://www.modulant.com/partners/training.shtml

Preface

® Your application domain

m Relational database management systems (RDBMSs)

Conventions Used in this Guide

The manuals in the Modulant Contextia Documentation Library use the following
typographic conventions:

x System Overview

bold text

bold italic text
italic text
SMALL CAPS

monospace text

File names, XML elements, user interface controls, and
language keywords.

Variable elements; for example, parameters in code syntax.
New terminology; also emphasized words and book titles.
Names of keys on the keyboard.

Examples, such as XML fragments or Java code; or text you
type exactly as it appears.

Descriptions of procedures also use the following conventions:

File>Import

CTRL+C
EscFI

A menu path to follow; in this example, from the File menu,
select Import.

Press both keys at the same time.

Press and release each key in succession.

The manuals contain notes, tips, and warnings that provide particular
information, as follows:

m Notes provide related information that does not fit directly into the flow of the
surrounding text.

m Tips provide hints containing shortcuts or alternative ways of accomplishing

a task.

m Warnings contain critical information that could prevent physical damage to
equipment, data, or people.

Some of the diagrams in the manuals use EXPRESS-G graphical notation. For an
explanation of the symbols in these diagrams, see Appendix A, “EXPRESS-G
Language Notation,” in Using the Context Mapper.

Discussions of XML files contain diagrams that show the structure of the
associated DTDs (document type definitions). Each of these diagrams contains a
legend describing the symbols in the diagram.

What's in this Guide?

About Sidebars

As you read the documentation, you will encounter information contained in
sidebars like this one. These sidebars provide background material related to
the surrounding information.

Operating System Specifics. All of the information in this manual applies to
both Windows and UNIX systems. However, pictures of dialog boxes show the
Windows “look” and path names use a backslash (\), rather than a forward slash
(/), to separate directory names.

What's in this Guide?

The System Overview contains the following sections:

m Chapter 1, “Introducing Information Interoperability,” describes what
information interoperability is about and how the Modulant Contextia
Interoperability Platform solves semantic conflicts among systems that must
share information.

m Chapter 2, “Introducing the CIIM,” describes the Context-based Information
Interoperability Methodology, Modulant’s patent-pending methodology.

m Chapter 3, “The Interoperability Process,” lists the stages in the process of
implementing information interoperability from a high-level perspective.

m Chapter 4, “Modulant Contextia Tools and Components,” describes the
design-time tools that are part of the Interoperability Workbench and the run-
time tools and components that come with the Interoperability Server.

m Chapter 5, “An Interoperability Example,” presents a simple example of
interoperability between two travel companies.

m Chapter 6, “Architectural Considerations,” shows some system architectures
you might use when implementing information interoperability.

m The Glossary defines terms specific to the Modulant Contextia platform, as
well as industry-standard terms used in the Modulant Contextia
Documentation Library.

Related Documents

In addition to this guide, the Modulant Contextia Interoperability Platform
Documentation Library contains the following manuals:

m System Overview (this manual): Introduces the Modulant Contextia
Interoperability Platform and the associated methodology, and describes all
of the included tools and components.

System Overview xi

Preface

i

System Overview

Modulant Contextia Interoperability Server Guide, which includes:

& Using the Interoperability Run Console: Provides detailed explanations of

each of the parts of the Contextia Interoperability Run Console, with
information on troubleshooting the results of interoperability runs.
Using the Interoperability Server Administrator: Describes how to start the
Interoperability Server, set database connections, and perform standard
server administration tasks.

Modulant Contextia Developer’s Guide: Introduces the Interoperability API,
with examples of how to use it to automate interoperability runs.
Installing the Modulant Contextia Interoperability Server: Describes the
system requirements for the Modulant Contextia Interoperability Server,
and walks you through the installation and configuration process.

Modulant Contextia Interoperability Workbench Guide, which includes:
& Using the Data Mapper: Describes how to create a description of the

physical format of your data and how to connect that to the logical
description of your application’s data structure—together this
information forms a data map.

Using the Context Mapper: Describes the mapping process, the elements of
the Modulant Abstract Conceptual Model, and how to use the Contextia
Context Mapper to create a context map file.

Installing the Modulant Contextia Interoperability Workbench: Describes the
system requirements for the Contextia Data Mapper and the Context
Mapper, and walks you through the installation process.

In addition to the printed documents, your Modulant Contextia installation
contains a complete online Documentation Library, in the doc subdirectory. You
can find the online Documentation Library in both HTML and PDF format.

To access the Modulant Contextia Documentation Library, do one of the
following:

» From the Windows desktop, select Start>Programs >Modulant Contextia

>

Interoperability Server > Documentation Library.

On Solaris systems, open the file doc/wwhelp.htm in your Interoperability
Server installation directory in a browser window.

Note: If you cannot open a PDF file, download a copy of the free Acrobat
Reader at:
www.adobe.com/products/acrobat/readstep.html

http://www.adobe.com/products/acrobat/readstep.html

1

Introducing Information
Interoperability

When there was only one computer program in the world, with only one user,

there was no problem making sure all of the necessary information was available.

This changed as soon as another computer system with different programs
entered the picture. At this point, there was no direct way for one system, whose
applications used information in a particular manner, to communicate with any
other system, whose applications might use information in another manner

altogether. This left each system isolated from the others, unable to share valuable

information.

Over time, many methods of enabling disparate systems to communicate have
been tried. Modulant has found a way to provide information interoperability —
the ability of two or more computer systems to understand each other and use
each other’s information in their own native context—while letting each
participating system remain autonomous. Information interoperability adds a
logical communication layer above the physical connections between systems.

Interoperability solutions complement existing enterprise systems and enable
them to work together. Without an interoperability solution, it is difficult for
different systems, even in the same conceptual domain, to share information
effectively without losing some aspect of the intended meaning of the data.

Information interoperability requires an understanding of the context in which
data is created and used —the realization that the information conveyed by the
data is always based on how people and organizations actually use the data.
Therefore, interoperability architects work closely with domain experts to
discover both explicit and implicit knowledge about application data.

This discussion covers the following topics:

m Enabling Information Interoperability

m Interoperability is About Communication
m The Role of Context

System Overview

1

1 Introducing Information Interoperability

Enabling Information Interoperability

2 System Overview

Communication is only successful when the intended recipients have understood
the message being conveyed. Information interoperability makes it possible to
make information available to all members of an interoperability environment
who need it to make business decisions. Modulant does this by retaining
individual company culture, including specialized terminology, perspective,
company folklore—which together form the context of an application. This
method recognizes differences and commonalities without compromising the
autonomy of each system.

Modulant makes interoperability possible by representing both application data
and the context of that data in a computable form, known as a context map, using
an abstract data model. Using these context maps, the Interoperability Engine
enables information interoperability between systems in related conceptual
domains (known as an interoperability environment), even if they use completely
different formats and terminology.

Modulant’s interoperability solution enables autonomous systems to exchange
semantically-rich information by:

m Operating on a logical as well as a physical level.

m Focusing on the integrity of information exchange, rather than on application
connectivity.

Interoperability is About Communication

m Performing semantic mediation using abstract domain models.
m Accommodating variant application perspectives on data.

m Providing a non-invasive, loosely-coupled solution that remains separate
from applications and data sources.

Interoperability is About Communication

Interoperability is the ability of people, organizations, and systems to work
together. Information interoperability is the ability of people, organizations, and
systems to communicate complete, meaningful information that enables everyone
involved to make the necessary decisions to conduct their business.

Consider two companies, one of which refers to the people who work there as
“employees” and the other of which refers to the corresponding group of people
as “staff members.” It would be burdensome to force either company to change its
native terminology in order to be able to work together. Fortunately, that is not
necessary. Instead, you can capture the meaning of both terms by moving up a
level of abstraction, and refer to “people” in both cases. This enables both user
communities to retain their preferred terminology and still communicate
successfully.

Figure 1 and Figure 2 show how interoperability makes effective communication
possible. In Figure 1, members of User Community 3 need two pieces of
information. They send a request to an interoperability service, from which
additional requests are sent to User Communities 1 and 2 to provide the necessary
information. Notice that each request is phrased using terms familiar to the
recipients, in their own native context.

Consider the case where User Community 1 represents a Sales organization that
stores data about customers and competitors; User Community 2 represents a
Procurement organization that stores data about suppliers and subcontractors;
and User Community 3 represents an Accounting organization that serves both
User Communities 1 and 2.

System Overview 3

1 Introducing Information Interoperability

Suppose that Accounting needs to know which of Sales’s and Procurement’s
accounts are overdue. The question goes through the interoperability server,
asking Sales, “Which of your customers pay late?” and asking Procurement,
“Which of your suppliers do you owe money to?

Figure 1: Request for Information Across Related User Communities

User Community 1: Sales

SR

/(‘é\// 117\ L

\-; jl/ User Community 3: Accounting
Request:
3 needs A 3needs XandyY

ahoutZ

about C

Interoperability
Service

3 needs M
aboutN

£
f”‘%ﬁ £
527
: SN g X S
&Rk)
: =/
SN T

User Community 2: Procurement

System Overview

Interoperability is About Communication

In Figure 2 you can see that each community answers using its own terminology,
which gets transformed to a format that the requestors understand:

m Sales returns a list of customers that still have unpaid bills.
m Procurement returns a list of bills they have yet to pay in full.
m The interoperability server transforms this information and returns a list of

delinquent accounts to Accounting.

Figure 2: Response to Request for Information

User Community 1: Sales

User Community 3: Accounting

) Response:
Hege '?g Here are Xand Y
ahou aboutZ

Interoperability

Semwice

Here is M
ahoutN

T//

‘%

User Community 2: Procurement

System Overview 5

1 Introducing Information Interoperability

The Role of Context

6 System Overview

Context is a somewhat elusive concept, because it involves describing what is not
always explicitly expressed. When you hear something that seems “out of
context,” you know that some fundamental information is missing. The context
lies in the details people often leave out because they think everyone knows them.
Within your own community, this often works, but when you try to communicate
with people outside your community, they might not understand until you clarify
what was left out.

Context depends heavily on the audience, and on their shared assumptions.
Member communities in an interoperability environment define the context of the
data in their own applications, based on how they use that data. Native context
includes the meaning and shades of meaning that data might have, as well as any
constraints on the values and relationships among data elements. This context
provides the foundation for mapping and data transformation for successful
interoperability.

Application context is the relevant information about the environment where
application data resides, including where the data is defined, created, and used.
Data context provides a frame of reference and clarifies the meaning of the data.
Without contextual information, data is not fully understandable.

The Modulant methodology relies on semantic abstraction: mapping data
elements from a more specific conceptual representation in a narrow context to a
more abstract conceptual representation in a broader, more encompassing
context. The mapping process focuses on meaning and shades of meaning that
data might have as well as constraints on values and allowed relationships.

2 Introducing the CIIM

The Context-based Information Interoperability Methodology (CIIM) includes a
number of methods that enable you to discover the context of application data
elements and capture this information in a formalized representation. The result
of following these methods is a data map file that describes the physical format of
your data and its logical structure, and a context map file that includes an ATS
(Application Transaction Set) schema (a logical representation of the application
data structure in terms of entities and attributes) and one or more context maps
that you can use as part of an interoperability run.

This section includes the following topics:
m Underlying Principles

m The CIIM Framework

m CIIM Architecture

m The CIIM Methods

Underlying Principles

Successful implementation of an interoperability solution is impossible without a
concrete and consistent logical framework for understanding digital information.
Such a theory must consider how an interoperability solution views, understands,
represents, and manipulates the data that must be shared among applications in
an interoperability environment.

For example, without a concept of information apart from awareness of the data
between the tags in an XML document or the data in a database, no tool can
provide effective interoperability capabilities. It is necessary to account for all of
the meta-information that makes raw data useful to actual people in order for the
software to do anything significant to the information structures themselves.

The Context-based Information Interoperability Methodology is based on the
following principles:

1 Effective information interoperability depends on knowledge of context.

System Overview 7

2 Introducing the CIIM

2 Context can be described by characterizing data definition, data aggregation,
data usage, and data constraints.

3 Context can be discovered from data values, data patterns, data descriptions,
activities that create or use data, and functions that process or present data.

Context can be represented in a computable form.

5 Application information, including context, can be represented using an
Abstract Conceptual Model (ACM).

6 Interrelated application contexts can be accommodated using common
abstractions.

7 Declarative representation of instructions for information-preserving
transformations between application data and an ACM enable ACM-
mediated interoperability among applications.

The CIIM Framework

8 System Overview

As shown in Figure 3 on page 8, the Context-based Information Interoperability

Methodology includes a number of methods. The result of applying these
methods is a data map and one or more context maps.

Figure 3 shows the methods that form the core of the Context-based Information
Interoperability Methodology. The result of each method forms the input for the
next method in the cascade.

Figure 3: The CIIM Methods

Context A
Discovery * Application data description
* Anplication context description
Information & Context | Context * ATS Schema + Map Domain(s)
Analysis Formalization * Data Map

* Mapping strategy

Information & Context
- Context
Representation)
- (Accommodatlon
Information & Context
*Mapping to ACV?

*ACM Popuiation Rules | * Context map(s)

The major methods in the CIIM all address information and its context, each with
a different focus:

m Context discovery focuses on analysis, of both data and its usage in context.
This phase also includes learning about the physical data structures.

CIIM Architecture

m Context formalization focuses on representation of that data, and results in an
ATS schema—a list of data elements and their relationships—and a data
map—a description of the physical format of the application data and how
the data fields correspond to the logical description in the ATS schema.

m Context accommodation focuses on mapping data elements to an Abstract
Conceptual Model and defining the rules the Interoperability Server uses for
population and extraction operations on the ACM.

CIIM Architecture

The Context-based Information Interoperability Methodology relies on the
following key concepts to describe application data structures and relationships:

m Data Elements
® Information Units
m Map Domains

Figure 4 shows how data elements combine to form information units.

Figure 4: Aggregations of Data and Information

. Root Data Element . Information Unit

Data Element Context Map Domain

The following sections explain these terms.

System Overview 9

2 Introducing the CIIM

Data Elements

The CIIM recognizes two types of data elements in an application:

m Data elements are logical representations of data fields in an application. Each
data element is directly related to a root data element.

m Root data elements are specialized data elements that identify a central concept
or subject in a data set. They serve as anchor points for mappings of related
data elements.

Root data elements are often the primary keys of database tables, or similar
identifiers on which other data elements depend for them to make sense. For
example, a product identifier is related to other characteristics of that
product’s appearance, and serves as the root data element for data elements
related to products.

Information Units

An information unit is the combination of a data element and the related root data
element. This combination describes one fact about an identified “thing,” where
the root data element is the identifier. The smallest information unit possible
contains only the root data element (and its relationship to itself).

For example, in a personnel application, if the employee ID is the root data
element, the combination of the employee ID with the employee’s name is an
information unit.

The collection of information units that share the same root data element is an
information aggregation. An information aggregation contains “information about
the same thing” as it occurs in an application. Information aggregations often
represent structures such as database tables, XML elements and their
subelements, and entities in a data model.

Note: When you create structure mappings using the Context Mapper, each root
structure in a map structure represents the context for an information
aggregation. For more information, see “Completing Structure Mappings” on
page 202.

Map Domains

10 System Overview

The domain of a context map is the set of data elements required for an identified
business process. For example, in an application that stores information about
employees, you might learn during the context discovery phase that the process
that prints timesheets requires only an employee’s identification number and the
person’s last name. To enable information interoperability, you could create a
context map that included only these two data elements. For an example, see
Chapter 2, “The Mapping Process.”

The CIIM Methods

Depending on the complexity of the application and the number of business
processes it supports, you might need to define more than one context map. Your
analysis of the data and the mapping strategy you choose will help you decide
which context maps are needed.

The CIIM Methods

The methods of the CIIM are concerned with understanding, analyzing, and
formally describing the semantics and context of application data.

This section discusses the following methods:
m Context Discovery
m Context Formalization

m Context Accommodation

Context Discovery

Interoperability architects work with domain experts to apply the context
discovery methods. Using these methods, they identify both explicit and implicit
information about application data. Context discovery includes these stages:

m Application Information Analysis

First, you must learn what the application data represents and how the data
elements relate to each other. To do this, you begin by examining instances of
the data itself, along with any written documentation that describes the data
structures. Knowing the scope of the data that will participate in the
interoperability process helps you identify the data elements involved.

m Business Process Context Analysis

Once you have learned about the data, you proceed to discovering specific
ways in which people and organizations use the data. For each of these usage
scenarios, you collect information about the data in context. As you identify
the data used in each business process, you can use the information about the
context to plan an effective mapping strategy.

The context discovery phase produces a description of the application context,
including details that were originally both explicit and implicit. At the end of this
phase, you should have a description of the application data, either in the form of
a physical application schema (for example, in an EXPRESS file or a DTD) or a
written description of the data structures.

System Overview 11

2 Introducing the CIIM

Context Formalization

Context Formalization results in a definition of your application data structure, in
the form of a data map (stored in XML format in a file with a .dtm extension). In
this stage, you consolidate what you learned from the context discovery phase.
Using this method, you codify all of the explicit and implicit knowledge that you
gathered during your examination of the application data and design documents
and your interviews with domain experts.

As part of this process, you create a description of the logical structure of the data,
in terms of entities and attributes. This description is known as the ATS schema.
The ATS schema includes a list of the data elements in the application, including
the root data elements. At this point, you also identify the data elements in the
application and their related root data elements, along with any requirements for
format or data conversions.

Next, you develop a plan for how you will map the application’s data elements
and the relationships among them to your Abstract Conceptual Model. The
mapping strategy includes a list of the Abstract Conceptual Model attributes to
use as mapping targets for the data elements in the ATS schema and the
relationships among ACM entities that represent the context of the application
data.

Context Accommodation

12 System Overview

Having created a formal definition of an application’s data set and identified an
Abstract Conceptual Model that can represent the concepts in your application,
you apply the Context Accommodation method. Using this method, you specify
mapping targets for the application’s data elements in your Abstract Conceptual
Model based on your mapping strategy, and add contextual information that
describes the relationships among related data elements. This is the heart of the
mapping process.

Another part of the context accommodation process uses the formal description of
the application data’s semantics and context to create computable instructions for
transforming data between different applications, while preserving semantics and
accommodating context. This includes:

m Conversion Definition

Format conversions and data conversions provide additional information for
the Interoperability Server to use as it processes application data.

¢ Using a format conversion you could specify how different applications
represent the same value. For example, you can specify data conversions
that separate the month, day, and year components from a date. This lets
each application specify how it represents dates, independently of the
abstract representation of each individual component. You can also use
data conversions to define derived fields, so that you can map data
elements that do not appear in the original data structures.

The CIIM Methods

¢ Using data conversions, you can specify formulas for translating data from
one application so that other applications can understand it. Data
conversions let you create “derived” fields to enable you to map data
elements that do not explicitly appear in the application data.

m Population Rules

Population rules enable you to connect application data elements to attributes
in your Abstract Conceptual Model to supplement the connections already in
the context map. These connections let you refine how the Interoperability
Server populates the Abstract Conceptual Model with application data
during an interoperability run. At this point, you also specify default values
to use when populating Abstract Conceptual Model attributes for which there
are no corresponding application data values.

The results of the context definition methods form the core of the context map, in
the form of computer-processible declarative statements.

At the end of this stage, you have a context map file, with an ATS schema and one
or more context maps that capture the context of specific business processes.

System Overview 13

2 Introducing the CIIM

14 System Overview

3 The Interoperability Process

The interoperability process begins when you identify two or more applications
that require information from each other. These applications together form an
interoperability environment. To begin with, interoperability architects meet with
domain experts to develop an interoperability strategy. For more information
about developing this strategy, identifying an abstract representation to use, and
producing context maps, see Using the Context Mapper. For information about
creating data maps that describe the physical format of application data, see Using
the Data Mapper.

The overall interoperability process follows these stages:
m Design-time Process: Applying the CIIM

m Run-time Process: Achieving Information Interoperability

Some of the stages in the interoperability process are supported directly by the
Modulant Contextia Interoperability Platform. Other steps depend on your own
system architecture and tools.

Design-time Process: Applying the CIIM

The design-time process includes the following stages:
m Develop an Interoperability Strategy

m Describe Application Data Formats in Data Maps
m Capture Application Context in Context Maps

Figure 5 shows what you create during the design-time process and the Modulant
Contextia tools that support each part of the process. For each application in your
interoperability environment, you start with a physical description of the
application data. Using this description, you create both a data map, which
mirrors the structure of the physical data fields in the application and an ATS
schema, which represents the logical structure of the data in terms of entities and
attributes. The ATS schema becomes the foundation for one or more context
maps, which describe the context of the data elements in the application and their
relationships in terms of an Abstract Conceptual Model.

System Overview 15

3 The Interoperability Process

Figure 5: Design-time Process

b1
N |
application ATS
schema data map schema context Abstract Conceptual
(physical
structure)

(logical map Model

structure)

data map file context map file
p k p | _)

s ————————— —— ———— —

The following sections describe the high-level process that supports the creation
of the mapping strategy and the resulting mapping specifications.

Develop an Interoperability Strategy

The first step in implementing information interoperability is identifying the
member communities in an interoperability environment, and the applications
that must share information. With this information, you can begin to develop an
interoperability strategy.

A significant part of any interoperability strategy is the abstract representation of
the application domain, or ontology, that will be the starting point for your context
maps. The Modulant Contextia Interoperability Platform refers to this
representation as an Abstract Conceptual Model (ACM). The default installation
includes an ACM schema defined as an EXPRESS model. You can modify the
Modulant ACM to fit the needs of your application domain. For more information
about the contents of this model, see Chapter 4, “Inside the Abstract Conceptual
Model,” in Using the Context Mapper.

When you design interoperability strategies for the member applications in an
interoperability environment, it is essential that you plan all your context maps
using the same ACM—one that contains enough detail to represent the concepts
in all of the applications that must be able to work together.

16 System Overview

Design-time Process: Applying the CIIM

An effective interoperability strategy requires collaboration between
interoperability architects and domain experts:

m Interoperability architects bring their knowledge of the application data,
including its context and knowledge of the Abstract Conceptual Model to
which the application data is to be mapped.

®m Domain experts bring their familiarity with the specifics of each application,
including the context of the data and how it is used.

Together, they identify the following information:

m The major concepts, ideas, or things that each application deals with and
holds information about.

m The major concepts, ideas, or things that are common across applications that
need to interoperate.

Using this information, they can determine which concepts from the Abstract
Conceptual Model to use to represent each of the application concepts and their
relationships.

At the end of this stage, you will have an EXPRESS model containing an Abstract
Conceptual Model schema that you can use to define context maps and a basic
agreement about which concepts in this model correspond to the major areas of
application functionality in the member applications.

About Abstract Conceptual Models

An Abstract Conceptual Model (ACM) represents a collective understanding of
the semantics of information commonly used by business applications. The
entities in this model are abstract enough to apply to a variety of situations. This
abstraction allows you to reuse the same entities as mapping targets in different
contexts within an interoperability environment.

The process of mapping involves associating data elements from an ATS schema
with attributes of entities in an Abstract Conceptual Model.

To create effective mappings, you must understand not only the entities in your
ACM and their relationships, but also the context and relationships of the data
elements in the applications that will share this data.

In order to work with the Modulant Contextia Interoperability Platform, an
Abstract Conceptual Model must be written in the EXPRESS language. The
Modulant ACM is extensible—you can add to it if it does not contain entities that
apply closely enough to a particular situation. You can even expand this EXPRESS
model to encompass new application domains.

System Overview 17

3 The Interoperability Process

The EXPRESS Modeling Language

The EXPRESS data specification language is part of STEP (STandard for the
Exchange of Product model data), defined in International Standard 1SO 10303,
and is used in the STEP methodology.

The STEP team discovered that existing modeling languages were not adequate
to convey the richness of the semantics required to represent abstract models
containing things, associations among those things, constraints, and
inheritance (represented by supertypes and subtypes).

The EXPRESS language can formally describe the structure and correctness
conditions of any information that needs to be exchanged. The EXPRESS
language describes constraints as well as data structure. Formal correctness
rules will prevent conflicting interpretations.

About Application Transaction Sets (ATSs)

An application transaction set (ATS) is information that collectively represents the
data and context of an application for the purpose of interoperability. An ATS
serves as the “footprint” of an application in the Modulant toolset. An ATS
contains the following components:

m Context map files, which are also known as CXM files. A CXM file has two
parts:

¢ The ATS schema, which represents the logical structure of the application
data—the data elements and their properties.
The physical representation of the structure is known as the application
schema You use the application schema to create the ATS schema.

¢ One or more context maps, which contain a set of mapping statements and
the associated structure mappings. A context map associates the ATS
schema with an Abstract Conceptual Model (ACM) schema.

You use the Context Mapper, part of the Modulant Contextia Interoperability
Workbench, to create CXM files.

m Data map files, which describe the physical format of each source of
application data, and relate the physical data fields to logical data elements in
the ATS schema.

You use the Contextia Data Mapper, another part of the Modulant Contextia
Interoperability Workbench, to create data map files.

The context map files and data map files are created in the mapping process and
is used in the interoperability run process.

18 System Overview

Design-time Process: Applying the CIIM

Associated with each ATS is application data, which becomes known as ATS data
after it has been imported into the Interoperability Server. The application data
can come from:

m the tables of a relational database
m forms or reports generated by an application
m XML data files

m free-form or delimited flat files

Describe Application Data Formats in Data Maps

As shown in Figure 5 on page 16, the design-time process starts with a physical
description of an application’s data structure. From there you build a logical
representation of that data structure, which you use to define context maps that
capture the abstract concepts conveyed by the data and the context in which it is
used.

This stage includes the following tasks:
m Develop Application Schemas
m Create Data Maps to Describe Physical Structures

Develop Application Schemas

For each application in your interoperability environment—whether it will serve
as a source or a target of an interoperability run—you must describe the physical
structure of the data in a format that the tools in the Modulant Contextia platform
can understand.

To begin this process, you can create an application schema. You can save the
application schema as an XML DTD, a delimited flat file (such as CSV, comma-
separated values), or an EXPRESS model, or you can read the structure directly
from a relational database.

Using the application schema, you create a logical representation of the data
structure in terms of entities and attributes, which you save as an ATS schema in a
context map file. Each data map file you define will describe the data fields in the
application schema and how they correspond to the logical data elements in the
ATS schema.

At the end of this stage, you will have an application schema that describes the
physical data structures used by your application. You will use the application
schema to create the ATS schema section of your context map file.

System Overview 19

3 The Interoperability Process

Capture Appl

20 System Overview

Create Data Maps to Describe Physical Structures

For each physical source of application data, that is, for each file format your
application data uses, you create a data map file that delineates the actual data
formats. The data map file serves two purposes:

m To enable the Data Importer and Exporter components of the Interoperability
Server to parse application data in its native format.

m To define the relationship between the data elements in the ATS schema
portion of the context map file and the actual application data.

Your application data can take a variety of formats, including XML, delimited or
free form flat-files, or the tables of a relational database. The corresponding ATS
schema, however, must describe the data in a logical format using entities and
their attributes. Using the data map file, you specify how each of the fields in the
physical data file corresponds to an attribute of one of the entities in the logical
representation of the data structure. For more information, see Using the Data
Mapper.

At the end of this stage, you will have data map files that define the format of
source and target application data. The Modulant Contextia Interoperability
Server will use these files to parse source data as the input to an interoperability
run and to export target application data in its native format.

ication Context in Context Maps

For each application in your interoperability environment, you must create one or
more context maps that define the relationships between the application schema
and attributes of entities in your Abstract Conceptual Model.

About Context Map Files

A context map file (also known as CXM file) is a representation of one or more
context maps in XML format. The context map includes both the ATS schema and
mapping information, including mapping statements and structure mappings.
The ATS schema portion of the CXM file is a list of the data elements in your
application schema and their properties, which forms a logical representation of
the structure of your data, using entities and their attributes.

Mapping involves discussions between interoperability architects (specialists in
the Context-based Information Interoperability Methodology, including the
Modulant Abstract Conceptual Model) and domain experts (specialists in the
source or target applications). Jointly, they confer about:

m data meaning and nuance

m isolating individual semantics so they can be separately mapped (think of this
as semantic normalization)

m how to represent concepts in the Abstract Conceptual Model

Design-time Process: Applying the CIIM

The end result of the mapping process is one or more context maps that associate
data elements in a source or target application with attributes in the Abstract
Conceptual Model.

For details about the structure and contents of CXM files, see Using the Context
Mapper.

The Mapping Process
Figure 6 shows a small portion of the structure of two applications and how each
one can be mapped to an Abstract Conceptual Model (an abstract representation):

®m Manual and Writer in the Application 1 are mapped to Document and Person
in the Abstract Conceptual Model.

m Staff Member in Application 2 is mapped to Person in the Abstract
Conceptual Model.

In an interoperability run, Writer in the source application (Application 1) would
be transformed into Staff Member in the target application (Application 2).

Figure 6: Mapping Data Elements to an ACM

Person

Application 1

Application 2

Staff
Member

Document

Abstract Representation

Application 1 Application 2
Context Map Context Map

(wwriter)~
Manual

Person
Person

Product
roduc Product

____________ Document
Document

System Overview 21

3 The Interoperability Process

22 System Overview

The mapping process includes the following steps:
m Identify Map Domains
m Map Data Elements to ACM

m Specify Required Conversion Definitions

At the end of this stage, you will have CXM files for the source and target
applications in your interoperability environment. You will be able to use these
CXM files when you perform interoperability runs.

For more information about context maps and the process for creating them, see
Using the Context Mapper.

Identify Map Domains

Before you can define a context map, you must determine which data elements in
the logical representation of the application data structure—the ATS schema—will
participate in each of your context maps. You can create the ATS schema using
either the Data Mapper or the Context Mapper.

The ATS schema lists the data elements in the application, along with their
properties, and defines each data element as an attribute of a logical entity that
represents a particular “thing” in your application.

Each context map can contain a subset of the data elements in the ATS schema, or
all of the data elements. The data elements in a context map are known as the map
domain. The domain of a context map contains all of the data elements necessary
to represent a known business process, whose context the map will capture.

Map Data Elements to ACM

After defining the domain of a context map, you specify mapping targets for the
data elements from the attributes of entities in your Abstract Conceptual Model.
Then you complete the structure mapping for the context map. The structure
mapping connects the mapping target for each data element and the mapping
target for the associated root data element.

Specify Required Conversion Definitions

In some cases, the data elements in your ATS schema do not correspond directly
to attributes of entities in your ACM. A conversion definition enables you to specify
how to handle a data element that does not have a direct mapping target in the
ACM.

Specifying the rules for separating or combining data elements, or for deriving
entirely new data elements from existing ones is part of the conversion definition
process.

Run-time Process: Achieving Information Interoperability

Run-time Process: Achieving Information Interoperability
The run-time process includes the following stages:
m Configure Interoperability Run
m Perform Interoperability Run

m Retrieve Target Data in Native Format and Verify Results

Figure 7 shows how the run-time process uses the mapping specifications you
created at design-time to produce information interoperability.

Figure 7: Enabling Information Interoperability

Source 1: Application

Data 1
Data
hap 1 |
| Context

T Map 1

Context Target: Application

+| patas
Abstract Representation Map:3 @ Oata I
p

Context
Source 2: Application +| Map2
Data 2
Data
hap 2

Configure Interoperability Run

After creating data maps and context maps for each of the applications that will
participate in an interoperability run, you are ready to define the parameters of
the run itself.

For each source and target application that will participate in an interoperability
run, you must specify the locations of one or more files of the following types:

m CXM file, which contains the ATS schema (a logical description, in terms of
entities and attributes, of the application’s data structure) and one or more
context maps.

For information about creating context maps and the XML format in which
they are stored, see Using the Context Mapper.

System Overview 23

3 The Interoperability Process

m Application data, which can be in a file or a relational database or inline with
the run configuration parameters.

m Data map file, which describes how to parse and format the physical data, and
how the data fields in the application correspond to the logical entities and
attributes in the ATS schema section of the CXM file.

For information about creating data maps and the XML formats in which they
can be stored, see Using the Data Mapper.

You can cache frequently used files, such as your Abstract Conceptual Model,
on the Interoperability Server before you initiate interoperability runs that use
those files. You can do this in the following ways:

m using the Interoperability CL
m using SOAP messages you send to the Interoperability Server using HTTP
® using the Interoperability API

This stage produces a set of run configuration parameters that you pass to the
Interoperability Server. If you use the Interoperability Run Console to define the
interoperability run, you can save the run configuration parameters in an XML
file. You can use this file to perform interoperability runs using the
Interoperability CL, SOAP messages, or Java client programs you write using the
Interoperability APL

Perform Interoperability Run

Using the configuration parameters you provide, the Interoperability Server
performs the interoperability run. At the end of the run, the Interoperability
Server extracts target data from the ACM as ATS data in the internal work space.
From there, the data is exported to target application data files. The
Interoperability Server uses the information in the target data map files to format
the exported data in the target application files you specified.

For more information, see “Flow of an Interoperability Run” on page 36.

At the end of this stage, you will have target application data. At this point, the
target data is formatted using the context and format familiar to users of the target
applications, and is ready to transfer to the system that needs it.

Retrieve Target Data in Native Format and Verify Results

24 System Overview

After a successful interoperability run, you retrieve the target data from the
Interoperability Server. At this point you can review the results and verify that the
target data matches your expectations.

At the end of this stage, your target application data will be available for use by
the applications that need it.

Modulant Contextia Tools and
Components

The Modulant Contextia Interoperability Platform is a collection of tools and
components that enable interoperability among heterogeneous applications
running on different machines and platforms. It fosters interoperability by
sharing information—including the full semantics and the context of the data
usage. The Modulant Contextia platform resolves conflicts between incompatible
systems by preserving the semantics and context of data.

To create true interoperability, the Modulant Contextia platform transforms data
from one source to another by mapping the logical schema of each application to
an abstract representation—known as an Abstract Conceptual Model (or, for short,
an ACM). The Modulant Contextia Interoperability Server reads context and data
maps for each participating application. The schema and map files that describe
the structure and context of an application’s data are known collectively as
Application Transaction Sets, or ATSs.

The tools that come with both the Interoperability Workbench and the
Interoperability Server run on both Windows and Solaris systems. The
Interoperability Server uses a database to manage the internal details of
interoperability runs. The number of database connections you define determines
the multi-threaded behavior of the server. Both Oracle and SQL Server databases
are supported.

This chapter addresses the following topics:
m Design-time Tools: The Interoperability Workbench
m Run-time Tools: The Interoperability Server and its Client Tools

m Inside the Interoperability Server

System Overview 25

4 Modulant Contextia Tools and Components

Design-time Tools: The Interoperability Workbench

The Modulant Contextia Interoperability Workbench contains tools that support
the design-time stages described in “Design-time Process: Applying the CIIM” on
page 15.

The Interoperability Workbench contains the following tools:

m The Data Mapper

m The Context Mapper
Two additional Windows-based data modeling tools, FirstSTEP XG and FirstSTEP

EXML, support the Interoperability Workbench. Both of these tools are available
on the Workbench CD.

The Data Mapper

26 System Overview

The Data Mapper enables you to describe the physical structure and format of
application data. The information you provide specifies how to parse the data to
identify the values for each data element at runtime. In addition to the physical
description, you specify how the physical constructs in the application data
correspond to the logical entities and attributes in an ATS schema.

Data map files can describe data in the following formats:

m XML data

m flat-file data, with or without specific delimiters between fields

® relational database tables in Oracle and SQL Server databases

Figure 8 shows the main window of the Data Mapper:

m The Fields and Containers region on the left shows you the properties of the
selected element in the data map.

m The Data Map region in the middle shows the structure of the data map as
you build it.

m The ATS Schema region on the right shows the logical structure of the data, in
terms of entities and their attributes, and how this logical structure
corresponds to the physical data fields in the application data.

Design-time Tools: The Interoperability Workbench

Figure 8: Data Mapper Main Window

BI Data Mappet: Untitled =] B3
File Edit Utilities Help
Data Map Fields |Containers | ATS Schema |
@ DataMap ATS Schema
@ B us_tours
g start_date e @ @) us Tours
cost @ us_tours
[duration isconnec [cost
[tour_number [duration
[start_date
[tour_number
Move Uy M
rU 1 Fields
Add... Edit... Remove

The Context Mapper

The Contextia Context Mapper enables you to define one or more context maps
for an application schema. The main window shows you the data elements in
your application along with the parts of the context map as you develop it. In
addition, you can view all or part of the structure of the Abstract Conceptual
Model that contains the mapping targets for your data elements.

Figure 9 shows the main window of the Context Mapper:

m The ATS Schema region lists the data elements in your ATS schema and the
domain of the current context map. In this region, you can view and change
the properties of data elements and add data elements to the domain of a
context map.

m The Abstract Conceptual Model region lists the entities in the Abstract
Conceptual Model that contains the mapping targets for the data elements in
your ATS schema.

m The Structure Mapping region displays the structure mapping for a context
map. The structure mapping is a set of instances of Abstract Conceptual
Model entities and their relationships that together provide the context for
that data elements that appear in the context map.

System Overview 27

Modulant Contextia Tools and Components

Figure 9: Context Mapper Main Window

\Program Files\Modulant'Contextia‘Workbench\cxm\us-tours1l.cxm*

EER @E

C_'A; Context Mapper -

File Edit View Utilities Reports Emvironment Help

v

Conversions |

Context Map |US Tours v|| add. | Edt. | Remove |
-ATS -Abstract Conceptual Model | pStructure Mapping
Map Domain Name [modulant_acm_zo.exp ‘| Active Root | tour_number <... v
@ & UsTours Show |m| Entities Show: W
@ us_tours
@ cost @ & All Entities © & product(1]
{3 duration ©- (7 action -0 context_disciplint—
[start_date ©- (7 action_approval -o description

- [start_date_day
© [# start_date_month
- [# start_date_year
©- B4 tour_number

© (7 action_date_assignment
©- (7 action_directive

© (J action_method

©- (J action_person_organization
@ (F action_product_assignment

- id <=> tour_num}

©- (F action_product_date_time
® (7 action_product_definition
@ (J action_request_approval

T

© (J action_request_solution p .
- - rAttribute Properties
ATS Schema Name |Tours | Apply ©- (F action_request_status ¢
@ & Us Tours @ (J action_status 7| | Reference
@ us_tours @ (J address 4 :
© (7 altemate_product_relations Constraints |
© (J approval l Add... l Edit H Remove ‘
@ (F approval_date_time Context
@ (9 approval_person_organization
Add... ” Edit... " Remove

: | ampy | [setect...| [Remove |

FirstSTEP XG and FirstSTEP EXML

28 System Overview

The Modulant Contextia methodology takes advantage of two Windows-based
data modeling tools, FirstSTEP XG and FirstSTEP EXML. Both of these tools were
developed by PDIT (Product Data Integration Technologies), which is a
wholly-owned subsidiary of Modulant Solutions, Inc.

FirstSTEP XG lets you create a graphical representation of a data model using the
EXPRESS modeling language. You can export the graphical representation to a
text file in EXPRESS format.

FirstSTEP EXML takes a text-based EXPRESS schema and exports an XML DTD
in a format that the Modulant Contextia tools recognize and can use.

Run-time Tools: The Interoperability Server and its Client Tools

Run-time Tools: The Interoperability Server and its Client Tools

The Modulant Contextia Interoperability Server comes with the following client
tools, which provide a variety of ways you can configure and initiate
interoperability runs:

m The Interoperability Run Console

m The Interoperability CL

m The Interoperability Server Administrator
m The Interoperability API

For details about the components of the Interoperability Server itself