
4

PowerTier Web Development Tools 4

This chapter describes the process of developing J2EE applications with Web
components, and introduces the PowerTier tools you use at each stage of the
development process.

This chapter contains the following sections:

� The Development Process

� Compiling and Packaging EJB Components with ps-makeejb

� Constructing Web Applications with ps-makeweb

� Extracting Enterprise Archive Files with ps-deploy

� Administering Web Applications with ps-webadm

� Administering Web Applications with ps-webgui

Prerequisites

A basic understanding of the components that can make up a J2EE Web application, as
introduced in Chapter 3, “Web Application Structure.”
35

4 PowerTier Web Development Tools
The Development Process
When you generate a PowerTier object model, you can use PowerPage to generate a
Web layer that provides HTML access to your CMP entity beans. The generated Web
files include the following:

� JavaServer Pages (JSPs) – Web files that contain HTML code that determines
presentation, and Java code that creates dynamic content. For more information,
see “JavaServer Pages” on page 32.

� HTML files that contain links to the JSPs.

� Wrapper classes – Java classes that run in the servlet container and translate
requests and responses between the JSPs and EJBs.

Figure 3 shows the pieces of a Web-based application, and identifies what PowerTier
generates for you and what you are responsible for creating or modifying.

Figure 3. Web-Based Development Responsibilities

The development steps for the initial version of the Web layer are:

1. Obtain or create a PowerTier object model.

2. Generate project classes using ps-gen with PowerPage.
36 Web Application Development Guide

The Development Process
PowerPage produces the following directory structure, where Web components
are highlighted in bold:
Project .per
generationDirectory \

ps-makeejb.cfg
ejb-jar.xml
pt-jar.xml
package \

beanCode .java
presentation\

wrapperCode .java �helper classes
jsp\

project \
beanPages .htm �static pages
bean -JSPs.jsp �JSPs
images\

3. Configure the Web application (by editing XML files, adding additional files, etc.)
as necessary.

4. Run the following command to build the EJB project files:
ps-makeejb -all

5. Run the following commands to create an open directory structure for the
generated Web components:
cd generationDirectory
ps-makeweb –webApp web -misc jsp\ project -classes presentation

This produces the following structure:
Project .per
generationDirectory \

ps-makeejb.cfg
ejb-jar.xml
pt-jar.xml
package \

beanCode .java
web\

beanPages .htm �static pages
bean -JSPs.jsp �JSPs
images\
WEB-INF\

web.xml
classes\

wrapperCode .java �helper classes
lib\

For more information about this structure, see “Web Application Structure” on
page 40.
37

4 PowerTier Web Development Tools
6. Run the following command on the Web application files to create a WAR file and
copy it to the Web pantry.
ps-makeweb -all -updatePantry

7. To deploy PowerTier Web components to the Web container, you must install your
Web application to the Web server plug-in and at least one servlet container.
For information, see “Installing Web Applications” on page 51.

The QuickStart Tutorial walks you through these preliminary steps, and describes the
generated files. In just minutes, PowerTier creates a working application that you can
test and use as a proof of concept. During iterative development, you can add
validation logic to the wrapper classes. Should you need to regenerate code, PowerTier
preserves any code you added to the wrapper classes.

You can also add business logic to the EJB layer in the form of custom entity bean
methods or session beans. Using the generated JSPs and wrapper classes as an
example, you can add calls to custom methods or session beans.

Development and deployment of a Web-based PowerTier application can include
tasks for Web designers, client developers, bean developers, server developers, and
system administrators. Your organizational structure and application requirements
will determine who is responsible for which task.

Managing Changes to Generated JSPs and HTML
PowerPage provides code insertion points in the wrapper classes. When you
regenerate your object model, PowerPage preserves any code in those insertion points.
The generated HTML or JSP pages do not provide code insertion points, since they are
intended only as examples. For efficiency, you may want to postpone changes to the
HTML files and JSPs until the object model is in its final form. However, you must
involve the Web designer from the start of development, to make sure that the
application logic supports the desired functionality.

Compiling and Packaging EJB Components with ps-makeejb
When you use PowerTier PowerPage to generate JavaServer Pages, PowerPage creates
a Class.jsp for each class defined in the object model. The Class.jsp allows an HTML
client to access and update PowerTier CMP entity beans of type Class. When the Web
browser invokes the Class.jsp file, the JSP sends a request to the ClassWrapper bean,
which runs in the JSP/servlet container.
38 Web Application Development Guide

Constructing Web Applications with ps-makeweb
You use the ps-makeejb command to compile the components in the EJB layer of your
Web application, including wrapper classes generated by PowerPage. The ps-makeejb
command:

� compiles Java source files

� generates container-adapter code (the RMI stubs and skeletons that enable remote
communication)

� generates starter deployment descriptors

� packages the deployment descriptors and compiled EJBs into a JAR file for
deployment

The helper classes generated by PowerPage have dependencies on the EJB bean classes
in your object model. Before you can run ps-makeweb to construct and package the
generated components into a Web application, you must run the ps-makeejb
command. Running ps-makeejb -all places the compiled bean class files into the EJB
pantry, which is on the system CLASSPATH. This ensures that all EJB bean class
dependencies will be resolved when you compile your Web application.

For more information about the ps-makeejb command, see the Tools Guide.

Constructing Web Applications with ps-makeweb
The ps-makeweb command creates PowerTier Web applications. You can use
ps-makeweb to extract the contents of a standard WAR file, create deployment
descriptors, and package the results into a PowerTier WAR file for deployment. The
ps-makeweb command provides options to:

� create a skeleton Web application, as defined in “Constructing a Web Application”
on page 40

� construct a Web application from a list of files

� create and update XML deployment descriptors

� compile Web application source (.java) files

� package Web components into a PowerTier WAR file

� copy a PowerTier WAR file to the Web pantry
39

4 PowerTier Web Development Tools
Web Application Structure
To deploy a Web application, you can use ps-makeweb to package your Web
components in a WAR file or to place them in an “open” directory structure. If you
start with a WAR file, then the Web administration tools ps-webadm and ps-webgui
will expand the contents when you install the application to a servlet container. For
more information, see “Expanding a WAR File to the Web Pantry” on page 52.

The following example shows a Web application in an open directory structure:
webAppDir\ � Web application context-root directory

*.jsp � Web application files
*.html � static HTML pages
images*.gif � image files
*.class � client-side applets, beans, classes
WEB-INF\

web.xml � standard Web deployment descriptor
ptwar.xml � PowerTier Web deployment descriptor
lib*.jar � libraries in JAR files
classes\…*.class � servlets and helper classes

The WEB-INF directory contains Java classes and configuration information for a Web
application, including deployment descriptors. This directory is analogous to a JAR
file's META-INF directory—it contains metainformation about the Web application’s
contents. The lib subdirectory contains classes stored in JAR files. The classes
subdirectory contains the class files for this Web application's servlets and support
classes.

Constructing a Web Application
To create an open directory structure, ps-makeweb starts with a skeleton Web
application—an empty Web application with the following directory structure:
webAppDir\

WEB-INF\
classes\
lib\
web.xml

In a skeleton Web application, the classes and lib subdirectories contain no files, and
the web.xml deployment descriptor contains an empty web-app element. To create a
skeleton Web application in a specific directory, use the following command:
ps-makeweb -webApp webAppDir
40 Web Application Development Guide

Constructing Web Applications with ps-makeweb
A skeleton application by itself is not all that useful. Therefore, you can also use
ps-makeweb with the -webApp option to populate a Web application’s open directory
structure with files that reside elsewhere in your file system. To do this, you specify the
files or directories that are part of that application.

For example, suppose you start with the following files and directories:
MyAppDir\

lib.jar
index.html
help.html
style.css
dir1\

images\
hello.gif
persistence.jpg

dir2\
classes\

servlet1.class
servlet2.class
servlet3.class

jsps\
jsp1.jsp
jsp2.jsp
jsp3.jsp

resources\
web.xml
ptwar.xml
serverside_resource

You can use the -webApp option of ps-makeweb to place these files into the open
directory structure of a Web application. The -webApp option works with the
following additional options, to specify the types of files that contain your Web
components:

-webinf Specifies application resources to copy into the WEB-INF directory.

-misc Specifies files and directories to copy into the application’s root
directory—the directory you specified with the -webApp option—by
default, the current directory.

-classes Specifies files and directories to copy to the Web application’s classes
directory. If ps-makeweb finds JAR files in the classes directory, it moves
them to the lib directory.
41

4 PowerTier Web Development Tools
You can use each of these options to specify both file and directory names. For each
option, you can specify one or more files and directories. For example, you can
combine these options to create a Web application as follows, starting in MyAppDir:
ps-makeweb -webApp webAppDir

-webinf resources
-misc jsps index.html help.html style.css dir1
-classes lib.jar dir2

This command produces a Web application with the following open directory
structure, where webAppDir is the context root:
webAppDir\

jsp1.jsp
jsp2.jsp
jsp3.jsp
index.html
help.html
style.css
images\

hello.gif
persistence.jpg

WEB-INF\
web.xml
ptwar.xml
server_side_resource
lib\

lib.jar
classes\

servlet1.class
servlet2.class
servlet3.class

When you construct a Web application using the -webApp option, if you do not specify
a web.xml file, then ps-makeweb creates one. To do this, ps-makeweb starts with the
default web.xml deployment descriptor supplied with your PowerTier installation,
and adds servlet and servlet-mapping entries, as described in “Updating Deployment
Descriptors” on page 43.

ps-makeweb and Deployment Descriptors
Web applications use two deployment descriptors:

� web.xml – 2EE-standard Web application deployment descriptor

� ptwar.xml – PowerTier-specific Web deployment descriptor
42 Web Application Development Guide

Constructing Web Applications with ps-makeweb
The ps-makeweb command has two options that work with deployment descriptors:
-all and -updateDD. By default, when you use these options, ps-makeweb performs
strict validation of elements in XML files against the corresponding DTD (document
type definition). To prevent this validation, use the -noValidate option in addition to
-all or -updateDD. The following sections further describe the -all and -updateDD
options.

Extracting and Merging Deployment Descriptors

When you extract Web components from an EAR or WAR file using the ps-deploy
command, ps-deploy expands the WAR file and merges the default web.xml file with
the existing application’s web.xml deployment descriptor.

The PowerTier installation process adds configuration information for the JSP engine
to the default web.xml file. The default ptwar.xml file has all of the elements
commented out. You must edit this file and add specific information about your
application.

Updating Deployment Descriptors

You can use the -updateDD option of ps-makeweb to update servlet and
servlet-mapping elements of the web.xml deployment descriptor. ps-makeweb updates
these elements for any precompiled servlets in the classes directory or in JAR files in the
lib directory of your Web application.

The -updateDD option uses the following syntax to identify servlet mappings:
packageName . className

For example, suppose you have a servlet class called Hello.class in the Java package
com.presistence, in your Web application’s classes directory. ps-makeweb adds the
following entries to your web.xml file:
<servlet>

<servlet-name> com.persistence.Hello </servlet-name>
<servlet-class> com.persistence.Hello </servlet-class>

</servlet>

<servlet-mapping>
<servlet-name> com.persistence.Hello </servlet-name>
<url-pattern> com.persistence.Hello </url-pattern>

</servlet-mapping>
43

4 PowerTier Web Development Tools
To simplify addressing, you can change the generated url-pattern element. So that you
do not have to use the complete URL http://host:port/context/com.persistence.Hello
to refer to the Hello servlet, you could change the servlet-mapping element in this
example as follows:
<servlet-mapping>

<servlet-name> com.persistence.Hello </servlet-name>
<url-pattern> Hello </url-pattern>

</servlet-mapping>

Before you change servlet-mapping entries for pre-packaged servlet classes, be sure
that all of your servlets have unique names. If servlets with the same name appear in
different packages, the servlet container only recognizes the first servlet with each
name.

The Web Pantry
You deploy Web components to the Web pantry—the location of expanded WAR files.
Both the Web server plug-in and PowerTier servlet containers look for application
components in this location. The PERSISTENCE_WEB_PANTRY environment variable
specifies the location of the Web pantry. If this variable is not defined, the Web
container uses the web\apps subdirectory of your PowerTier installation.

Note: By default, PERSISTENCE_WEB_PANTRY is not defined. For security reasons, it is
important that you do not include the Web pantry in the CLASSPATH.

Compiling and Packaging Web Components
In addition to merging deployment descriptors, the -all option of ps-makeweb
expands a standard WAR file to an open directory structure, compiles Java files in the
classes directory, and packages the result in a PowerTier-specific WAR file with the
name myWebApp-pt.war.

You should not use the -all option on a PowerTier WAR file. Instead, use ps-deploy to
expand the WAR file first, modify any files that must be changed (such as web.xml and
ptwar.xml), and then run ps-makeweb -all using the open directory structure to rebuild
the PowerTier WAR file. The new file will retain the name myWebApp-pt.war.
44 Web Application Development Guide

Extracting Enterprise Archive Files with ps-deploy
If you modify the XML deployment descriptors after using the -all command, then you
should run ps-makeweb -all again to recreate the PowerTier WAR file. If you also use
the -updatePantry option, then ps-makeweb copies the PowerTier WAR file to the Web
pantry in preparation for deployment to a servlet container.

When ps-makeweb copies a PowerTier WAR file to the pantry, it does not expand the
contents of the archive. When you use ps-webadm or ps-webgui to install a Web
application to a servlet container, the administration tools unjar the WAR file as part of
the deployment process (for details see “Expanding a WAR File to the Web Pantry” on
page 52). If the Web server is running when you deploy a Web application to a servlet
container, you must restart the Web server before it recognizes the newly-installed
application.

When you use the -updatePantry option of ps-makeweb to copy a WAR file to the Web
pantry, the servlet container finds the file and expands it. In order for the Web server
to see the changes to the application, you must use the administration tools to redeploy
the WAR file to the Web server plug-in. The plug-in does not dynamically recognize
changed WAR files. Until you use the administration tools to deploy the application to
the plug-in, the static files (such as HTML and graphics) are not copied to the Web
server’s document root directory. You can redeploy a Web application without
removing it first.

Extracting Enterprise Archive Files with ps-deploy
You use the ps-deploy command at the end of the development process when you have
application components packaged in EAR, JAR, and WAR files that you need to
modify. These components can come from other development groups, and can even
come from other vendors. When you receive these files, you need to extract their
contents so that you can customize the deployment descriptors and configuration files
to reflect your runtime environment.

The ps-deploy command extracts the contents of one or more specified EAR, JAR, or
WAR files to an output directory structure and creates default deployment descriptors,
or updates existing ones. ps-deploy creates a separate directory for each module
described in the application deployment descriptor (application.xml) of an EAR file.

Unless you specify otherwise (using the -extractOnly option), ps-deploy creates
deployment descriptors and PowerTier configuration files (or updates existing ones)
with default entries for each extracted component. Based on the type of module,
ps-deploy calls ps-makeejb or ps-makeweb to create these descriptors, as follows:

� For EJB components extracted from JAR files, ps-deploy calls ps-makeejb
-createDD.
45

4 PowerTier Web Development Tools
� For Java client modules extracted from JAR files, ps-deploy calls ps-makeejb
-createClientDD.

� For Web components extracted from WAR files, ps-deploy calls ps-makeweb -all.

Output Directory Structure

When ps-deploy extracts EAR, JAR, or WAR files, it derives the names of the output
directories from the names of the original archive files. For example, if you have a JAR
file called MyApp\atm\ATM.jar, then ps-deploy creates a project directory called ATM\.
Unless you specify otherwise (using the -outputDir option), the root of the extracted
files is the current directory. For an example of the generated directory structure, see
the Reference Guide.

Repackaging Components for Deployment
Once you have extracted the contents of EAR, JAR, and WAR files and updated the
necessary configuration files, you can use the ps-makeejb and ps-makeweb commands
to repackage application components for deployment. Because the PowerTier server
does not recognize EAR files in this release, you must package EJB components and
Java client programs into JAR files, and package Web components into WAR files. If
you want to create EAR files from your application components, you must use Sun’s
command-line tools.

If you have modified the generated deployment descriptors and configuration files,
Persistence recommends that you use the validation options of ps-makeejb and
ps-makeweb before repackaging your components.

To repackage your components, use the following commands:

� For EJB components extracted from JAR files, use either:
� ps-makeejb -ejbJar and ps-makeejb -ptJar, or
� ps-makeejb -all

� For Java client modules extracted from JAR files, use ps-makeejb
-serializeClientDD.

� For Web components extracted from WAR files, use ps-makeweb -all.
46 Web Application Development Guide

Administering Web Applications with ps-webadm
Administering Web Applications with ps-webadm
You use ps-webadm to administer Web components within a single PowerTier
installation. You can create servlet containers in any directory, but ps-webadm can only
fully administer containers in the web\se directory tree in your PowerTier installation.

If your application includes servlet containers that are not installed in the web\se
directory tree or that run collocated with the J2EE server, you can only use ps-webadm
to stop these containers, install or remove Web applications to or from them, and delete
them.

The ps-webadm command lets you install a Web application and control the life cycle
of standalone and collocated servlet containers. ps-webadm runs in two modes:

� Directly from the command line, where you specify all of the necessary options.

� As an interactive tool with an ASCII character-based interface.
To use the ASCII interface, run ps-webadm with no options (except -?, -help, or
-externalJre).

Figure 4 shows the main menu of ps-webadm’s ASCII interface.

Figure 4. The Main ps-webadm Menu

Welcome to the PowerTier Servlet Engine Manager:

The Web server is not currently running.

1) Administer the Plugin (Available for the Apache Web Server only)
2) Administer a PT Servlet Container
3) Administer a Web Application
4) Quit

Selection:

The ps-webgui command provides parallel functionality, using a graphical user
interface rather than an ASCII interface, with the following differences:

� Only ps-webadm can:
� Start, stop, restart, or show the status of servlet containers not installed in the

web\se directory tree.
� List installed Web applications or listen ports for servlet containers not

installed in the web\se directory tree.

� Only ps-webgui can:
� Show properties files of servlet containers in the web\se directory tree.
47

4 PowerTier Web Development Tools
� Show log files of servlet containers in the web\se directory tree.

For more information, see “Administering Web Applications with ps-webgui” on
page 54.

You can use ps-webadm to perform the following functions. Except where noted, you
can do each of these using either the command line or the ASCII interface:

� Servlet Container Administration Tasks
� Create a servlet container that can run standalone or collocated with a

PowerTier J2EE server.
� Start, stop, and restart the Apache, IIS, or iPlanet Web server and standalone

servlet containers.
� Delete a servlet container (standalone or collocated).

� Web Application Installation Tasks
� Deploy a Web application to the Web server plug-in.
� Deploy a Web application to an existing servlet container.
� Deploy a Web application to the Web server plug-in and to all servlet

containers in the web\se directory tree.
� Uninstall a Web application from one or more servlet containers and the Web

server plug-in.
� Uninstall a Web application from the Web server plug-in and all servlet

containers in the web\se directory tree.

� Servlet Container Monitoring Tasks
The following functions are only available using the ASCII interface, not from the
command line.
� List the Web applications installed for a Web server and one or more servlet

containers.
� List the “listen” port for one or more servlet containers.

ps-webadm.properties File

ps-webadm and ps-webgui both use a file called ps-webadm.properties to store
parameters about the administration tools themselves. You can find this file in the
config directory of your PowerTier installation. This file contains information
including:

� The location of your log file, and whether you have enabled logging.

� Your Web server’s document root directory.

� The location of your default Web deployment descriptor files.

� How often ps-webgui should refresh its internal components table.
48 Web Application Development Guide

Administering Web Applications with ps-webadm
Creating Servlet Containers

To create a servlet container, you use the -createSe option of ps-webadm. You must
specify the name of the new container and its port number. Each servlet container on a
single node must have a unique name (even if the containers reside in different
directories) and a unique port number.

When you use this option, ps-webadm does the following:

1. Creates a directory for the new servlet container with the container name you
specified. You can run this container standalone or in-process with a PowerTier
J2EE server.
If you specified a path, ps-webadm creates the servlet container in that directory. If
not, ps-webadm creates the servlet container in the default directory, web\se, in
your PowerTier installation.

2. Copies the default ps-se.properties.in and ps-startup.in files (from the
web\templates directory of your PowerTier installation) to the new container’s
directory.

3. Renames ps-se.properties.in to containerName.properties and adds properties
specific to the new container (such as the name and port number) to the properties
and startup files.

4. Configures a context for this container, called /servlet.

Once your servlet container has been created, you need to configure the Web server
plug-in with information about the new container. To do this, you add a MillSE record
to the ps-pi.conf file.

If you plan to run your new container collocated with a PowerTier J2EE server, you
must add a JSPServletEngine element to the server’s .ptc file.

Note: The command-line option -createSe does not configure servlet containers for auto-
start. To create a servlet container to use auto-start, you must use ps-webadm’s ASCII
interface or ps-webgui’s graphical interface.
49

4 PowerTier Web Development Tools
Starting, Stopping, and Restarting the Web Container
The -start, -stop, and -restart options of ps-webadm let you change the state of
standalone servlet containers and the Web server plug-in. You can use these options to
change the state of different parts of the Web container, as follows:

� the Web server plug-in

� one or more individual servlet containers

� all servlet containers in the web\se directory tree

� all servlet containers and the Web server plug-in together

To start or stop a collocated servlet container, use the Command Center to start or stop
the associated PowerTier J2EE server.

Deleting Servlet Containers
To delete a servlet container, you use the -deleteSe option of ps-webadm. When you
use this option, ps-webadm deletes the specified servlet container and the contents of
the directory where it is located.

Warning: ps-webadm does not ask for confirmation before deleting a servlet container. Use the
-deleteSe option with caution.

When you delete a servlet container, you must also:

� Reconfigure or remove any PowerTier server that uses the container.
To do this, you remove the JSPServletEngine element from the server’s .ptc file and
restart the server.

� Reconfigure the Web server plug-in, if needed, so that it does not attempt to route
requests to a nonexistent servlet container.
To do this, you comment out or remove the MillSE record associated with the
deleted servlet container from the ps-pi.conf file, and then restart the Web server.
50 Web Application Development Guide

Administering Web Applications with ps-webadm
Note: The command-line option -deleteSe does not delete a servlet containers that has been
configured for auto-start. To delete a servlet container that uses auto-start, you must
use ps-webadm’s ASCII interface or ps-webgui’s graphical interface.

Installing Web Applications

Installing Web components to the Web container gives your application access to EJBs
in the J2EE server, via the servlet containers. The Web server then makes these EJBs
available to Web-based clients on local hosts or over the Internet.

You can use both Web container administration tools—ps-webadm and ps-webgui—to
install Web applications. If you use the command-line option -install with ps-webadm,
use the -pi option to install an application to the Web server plug-in and the -se option
to install an application to one or more servlet containers. In either case, you specify a
context for the application, which becomes the URI.

Note: You can install a Web application to the Web server plug-in and one or more servlet
containers at the same time, by using the -pi and -se options on the same command
line.

Installing to the Web Server Plug-In

When you install a Web application to the Web server plug-in, the administration tool
does the following:

1. Copies the PowerTier WAR file to the Web pantry (if it is not already there) and
expands it (if it is not already expanded). For more information, see “Expanding a
WAR File to the Web Pantry” on page 52.

2. Copies all Web components that are not in the WEB-INF or META-INF directory to
the Web server's document root directory.

3. Adds MillMount directives to the plug-in's configuration file (ps-pi.conf) for the
specified Web application.
51

4 PowerTier Web Development Tools
Installing to a Servlet Container

When you install a Web application to a servlet container, the administration tool does
the following:

1. Copies the PowerTier WAR file to the Web pantry (if it is not already there) and
expands it (if it is not already expanded). For more information, see “Expanding a
WAR File to the Web Pantry” on page 52.

2. Modifies the servlet container’s properties file (containerName.properties) to
support this Web application.

3. Modifies the MILLSE directive in the Web server plug-in's configuration file
(ps-pi.conf) corresponding to the servlet container where you installed the
application, to inform the plug-in about the installed application.

Expanding a WAR File to the Web Pantry

When the administration tools expand a WAR file to the Web pantry, they perform the
following steps:

1. Remove the initial slash (/) from the context name.

2. If the rest of the context name contains slashes, replace each one with the
context-delimiter character defined in ps-webadm.properties. (See “Ensuring
Unique Context Names” on page 52.)
This new name is referred to as the normalized context name. For example, if you
specify a context of /abc/xyz, the normalized name is abc#xyz.

3. Create a directory in the Web pantry using the normalized context name; for
example, PERSISTENCE_HOME\web\apps\abc#xyz.

4. Expand the WAR file into this new directory.

5. If the Web server plug-in supports this context, copy static files from the expanded
WAR file in the Web pantry to the Web server’s document root directory.
The default value of the document root directory is
PERSISTENCE_HOME\apache\htdocs. You can change this using the
document-root property in the ps-webadm.properties file.

Ensuring Unique Context Names

The ps-webadm.properties file contains a property called context-delimiter. This
property defines a string delimiter, with a default value of #. ps-webadm uses this
delimiter to collapse the context root specified with the -install option into a single
52 Web Application Development Guide

Administering Web Applications with ps-webadm
directory. This helps guarantee that later on when the generated PowerTier WAR file is
expanded in the Web pantry, contexts such as /abc and /abc/xyz will not be expanded
into the same directory (which would be a huge security risk and a violation of the
servlet specification, since /abc would be able to access /abc/xyz’s files).

For example, suppose you run ps-webadm with the following options (and
context-delimiter is either not specified or set to #):
ps-webadm –installAll webapp-pt.war –contextroot /abc/xyz

ps-webadm adds the following line to the ps-pi.conf file:
MillMount /abc/xyz abc#xyz
MillSE containerName host port /abc/xyz #for each servlet container

ps-webadm also adds the following lines to the containerName.properties file for
each of the servlet containers installed in the web\se directory tree:
contexts=/abc/xyz
/abc/xyz.war=PERSISTENCE_HOME/web/apps/webapp-pt.war
/abc/xyz.path=abc#xyz

The following names are invalid context names:

� privatefs – The privatefs directory is created by the first servlet container to run in
your environment. All servlet containers then use this location as a file system to
maintain all HTTP session objects.

� sharedlib – Contains the shared library files for the Servlet Engine, which can be
dynamically reloaded from this location.

� defaultapp – This is a reserved context name that implements the default context
defined in the Servlet 2.2 specification.

ps-webadm displays an error message if you try to install a Web application using one
of these names as the context.

Removing Web Applications

Use the -remove and -removeAll options to remove a Web application that you
previously deployed to a servlet container or the Web server plug-in. To remove a Web
application, you specify its context. You can also specify from which parts of the Web
container you want to remove the application:

� the Web server plug-in

� one or more standalone or collocated servlet containers

� all servlet containers in the web\se directory tree

� all servlet containers and the Web server plug-in together
53

4 PowerTier Web Development Tools
When you remove a Web application, the Web administration tools delete all files
associated with that application from the directories associated with the Web container
parts you specify.

To Reviewers:

Monitoring Servlet Containers

You must use ps-webadm’s ASCII interface to monitor running servlet containers. The
following options are not available from the command line.

� List the installed Web applications for the Web server and one or more servlet
containers.
The list of installed servlet containers shows the following information for each
one:
� Name (and port number)
� Status (running or stopped)
� Web Applications

� List the “listen” port for one or more servlet containers.

Administering Web Applications with ps-webgui
The ps-webgui command does the same things as ps-webadm—using a graphical user
interface instead—with the following differences:

� Only ps-webgui can:
� Show properties files of servlet containers in the web\se directory tree.
� Show log files of servlet containers in the web\se directory tree.
54 Web Application Development Guide

Administering Web Applications with ps-webgui
� Only ps-webadm can:
� Start, stop, restart, or show the status of servlet containers not installed in the

web\se directory tree.
� List installed Web applications or listen ports for servlet containers not

installed in the web\se directory tree.

You can create servlet containers in any directory, but ps-webgui can only fully
administer containers in the web\se directory tree in your PowerTier installation. For
more information, see “Administering Web Applications with ps-webadm” on
page 47.

ps-webgui uses the file ps-webadm.properties—the same properties file ps-webadm
uses. For more information, see “ps-webadm.properties File” on page 48.

The ps-webgui command lets you install a Web application and control the life cycle of
standalone and collocated servlet containers. Figure 5 shows the main window of
ps-webgui. In this window, you see a list of servlet containers. For each container, the
list shows:

� Name (and port number)

� Status (running or stopped)

� Web Applications

Figure 5. The ps-webgui Main Window
55

4 PowerTier Web Development Tools
Related Information
See the following sources for related information:

Subject Location

PowerTier Servlet Engine features Chapter 2, “Introducing the Web
Container”

Web components in a J2EE application Chapter 3, “Web Application Structure”
56 Web Application Development Guide

	PowerTier Web Development Tools
	The Development Process
	Managing Changes to Generated JSPs and HTML

	Compiling and Packaging EJB Components with ps�makeejb
	Constructing Web Applications with ps�makeweb
	Web Application Structure
	Constructing a Web Application
	ps�makeweb and Deployment Descriptors
	The Web Pantry
	Compiling and Packaging Web Components

	Extracting Enterprise Archive Files with ps�deploy
	Output Directory Structure
	Repackaging Components for Deployment

	Administering Web Applications with ps�webadm
	Creating Servlet Containers
	Starting, Stopping, and Restarting the Web Container
	Deleting Servlet Containers
	Installing Web Applications
	Removing Web Applications
	Monitoring Servlet Containers
	�

	Administering Web Applications with ps�webgui

