
Before:

The following sample contains text I copied from the product Release 
Notes and edited lightly – primarily for consistency of style and 
active voice.



7 Controlling Access to Application Resources
Security and Distributed Methods
Some distributed methods invoke other distributed methods on objects that are 
collocated in the same server. The container-generated remote implementations may 
perform these collocated invocations and custom methods can invoke collocated calls 
in entity or session beans. 

All distributed methods are potentially subject to authorization checking. The actual 
authorization check occurs on the server side, in the container-generated 
implementations that delegate to the entity and session beans. This checking raises an 
important security issue:

When using the deployment descriptor (ejb-jar.xml) to restrict access to specific 
distributed methods, the deployer must specify not only the distributed method that the 
client application explicitly invokes, but also ALL collocated distributed methods that are 
invoked by the explicitly invoked distributed method.

An Example of Authorization Checking
The following situation illustrates this issue:

1. A client application invokes the standard container-generated create() method on 
an object reference for an entity bean's home interface.

2. The server does an authorization check and verifies the user/role/resource 
mapping for the client principal and the create() method resource.

3. The create() method internally invokes the container-generated 
findByPrimaryKey() and findEJBHome() methods.

4. The server does an authorization check for the client principal attempting to verify 
the user/role/resource mapping for the generated findByPrimaryKey() and 
findEJBHome() method resources as well.

For this situation, the deployer must specify (in the deployment descriptor) that the 
client principal has a role that has authorization to invoke create(), findByPrimaryKey(), 
and findEJBHome() even though the client principal does not explicitly invoke the 
latter two methods.
116 Security Guide



Security and Distributed Methods
The ColocatedAuthorization Attribute
For custom methods in entity and session beans, this checking behavior is the correct 
behavior. However, for container-generated implementations, the deployer does not 
know what the container-generated methods call internally, so they should not have to 
specify allowing access to all the collocated distributed methods. To correct this 
difficulty, this version of PowerTier contains a ColocatedAuthorization attribute in the 
.ptc file.

The ColocatedAuthorization attribute has an enabled field that can be set to true or 
false. When the enabled field is true, all collocated distributed calls are subject to 
authorization checks. If the enabled field is false, only the top-level collocated 
distributed calls for container-generated methods are subject to authorization checks. 
The default value is false. The server .ptc file would look something like this:

<?xml version="1.0"?>
...
<ServerConfig>

...
<JarFiles>

...
</JarFiles>
<SecurityPolicies>

...
<ColocatedAuthorization

enabled = "false"/>
</SecurityPolicies>
...

</ServerConfig>

Authorization Checking and Container Methods
To continue the example from “An Example of Authorization Checking” on page 116, 
assume that ColocatedAuthorization has an enabled field of false.

1. A client application invokes the standard container-generated create() method on 
an object reference for an entity bean's home interface.

2. Since create() is a top-level container-generated distributed call, the server does an 
authorization check: verifying a user/role/resource mapping for the client 
principal and create() method resource.

3. The create() method internally invokes the findByPrimaryKey() and findEJBHome() 
methods. 
117



7 Controlling Access to Application Resources
You will notice in this scenario the server does no authorization checking on the 
findByPrimaryKey() and findEJBHome() methods. The server does no checking because 
these methods are container-generated methods and they are not top-level distributed 
invocations. In this situation, the deployer must specify (in thedeployment descriptor) 
that the client principal has a role that has authorization to invoke create() only. 

Authorization Checking and Custom Methods
A slightly different situation occurs with custom entity or session bean methods that 
invoke collocated distributed methods. In this example, assume that 
ColocatedAuthorization has an enabled field of false:

1. The client application invokes the custom createAccount() method on an object 
reference for an entity bean's home interface.

2. Since createAccount() is a custom method, the server does an authorization check 
and verifies a user/role/resource mapping for the client principal and the 
createAccount() method resource.

3. The createAccount() method internally invokes a container-generated create() 
method that in turn internally invokes container-generated findByPrimaryKey() 
and findEJBHome() methods. 

4. Since the create() method is the top-level container-generated method, the server 
does an authorization check: verifying a user/role/resource mapping for the 
client principal and create() method resource. However, the server does no 
authorization checking for findByPrimaryKey() and findEJBHome() since they are 
container-generated methods and are not top-level distributed invocations.

5. The createAccount() method then internally invokes another custom distributed 
method matchIdentity() on a collocated object. 

6. Since matchIdentity() is a custom method and all custom methods are always 
subject to authorization checks, the server verifies a user/role/resource mapping 
for the client principal and matchIdentity() method resource.

In this situation, the deployer must specify (in the deployment descriptor) that the 
client principal has a role that has authorization to invoke the custom methods 
createAccount() and matchIdentity(), as well as the top-level container-generated 
method create().
118 Security Guide



After:

At the request of a reviewer, I modified the textual examples and 
created graphical representations.



7 Controlling Access to Application Resources
Security and Distributed Methods
Some distributed methods invoke other distributed methods on objects that are 
collocated in the same server. Some of these calls may be made automatically by 
methods generated by PowerTier. In addition, custom methods can make collocated 
calls in entity or session beans.

All distributed methods are potentially subject to authorization checking. The server 
performs the actual authorization check, in the generated methods that delegate to the 
entity and session beans. This checking raises an important security issue:

When using the deployment descriptor (ejb-jar.xml) to restrict access to specific 
distributed methods, the deployer must specify not only the distributed method 
that the client application explicitly invokes, but also all collocated distributed 
methods that the distributed method itself invokes explicitly.

For information about PowerTier-generated methods, custom business logic, and 
client-side methods, see Planning Your Enterprise Architecture and the PowerTier Server 
and EJB Development Guide.

Figure 7 shows an example that illustrates this situation.

In this example, the deployer must specify (in the deployment descriptor) that the 
client principal has a role that has authorization to invoke the create(), 
findByPrimaryKey(), and findEJBHome() methods, even though the client principal 
only explicitly invokes the create() method.
116 Security Guide



Security and Distributed Methods
Figure 7. Authorization Checking for Generated Distributed Methods
117



7 Controlling Access to Application Resources
The ColocatedAuthorization Element
For custom methods in entity and session beans, this checking behavior is the correct 
behavior. For generated methods, however, the deployer may not know which other 
methods the generated methods call. In this case, it should not be necessary to 
explicitly allow access to all of the collocated distributed methods. Therefore, the 
PowerTier server configuration (.ptc) file contains a ColocatedAuthorization element, 
which prevents this problem.

The ColocatedAuthorization element has an attribute called enabled that can be set to 
either true or false: 

� When enabled is set to true, all collocated distributed calls are subject to 
authorization checks. 

� When enabled is set to false, only the top-level collocated distributed calls for 
generated methods are subject to authorization checks. 

The default value is false. The .ptc file would look something like this:

<?xml version="1.0"?>
...
<ServerConfig>

...
<SecurityPolicies>

...
<ColocatedAuthorization

enabled = "false"/>
</SecurityPolicies>
...

</ServerConfig>

Figure 8 extends the example in Figure 7 in the case where the enabled attribute of the 
ColocatedAuthorization element is set to false. 

In this case, the server does no checking of either findByPrimaryKey() or findEJBHome() 
because these are generated methods. The deployer only needs to specify that the 
client principal has a role that has authorization to invoke create(). 
118 Security Guide



Security and Distributed Methods
Figure 8. Authorization Checking With ColocatedAuthorization, enabled=false

Authorization Checking and Custom Methods
A slightly different situation occurs with custom entity or session bean methods that 
invoke collocated distributed methods. Figure 9 shows an example where the custom 
method createAccount() calls both the generated create() method and the custom 
method matchIdentity(). In this example, the enabled attribute of the 
ColocatedAuthorization element is set to false.
119



7 Controlling Access to Application Resources
Figure 9. Authorization Checking for Custom Distributed Methods
120 Security Guide


	Before:
	After:

