
Part II: Using pattern libraries
This part contains information about using the COOL:Plex pattern libraries as you develop
applications. It includes a list of pattern libraries, with descriptions of each library,
followed by detailed examples of the objects in the FOUNDATION pattern library, and
instructions for using wizards, property sheets, and some ActiveX controls in your
application.

The major sections are:

What pattern libraries are available? . 50

Pattern libraries structure . 51

The FOUNDATION pattern library. 51

Creating a wizard . 74

Creating a property sheet . 76

Creating an MDI parent . 79

Customizing an ActiveX ToolBar. 80

Common pattern library fields .82

What pattern libraries are available? COOL:Plex 4.5 Quick Reference 50

What pattern libraries are available?

Pattern libraries are a set of COOL:Plex models that contain patterns.
A pattern is a reusable design object that you can use to solve a
recognizable business problem in your application. Once you inherit
from a pattern, you can customize it to meet your specific needs.
Every time you inherit from a COOL:Plex pattern, you create another
pattern that you can reuse in future applications.

There are three groups of pattern libraries: Primitives, Technology
patterns, and Business fundamentals.

Primitives – basic patterns for creating other patterns

• OBJECTS – The OBJECTS pattern library is the most fundamental
of the Primitives. It contains basic objects that you can use to
construct other patterns.

• FIELDS – The FIELDS pattern library contains fields common to all
of the other pattern libraries.

• VALIDATE – The VALIDATE pattern library contains meta-
functions that perform validation of entity and field relations.

• STORAGE – The STORAGE pattern library defines design objects
for database access.

• UIBASIC – The UIBASIC pattern library contains functions with
processing for simple panel elements that you can combine to
define the user interface of your application.

• UISTYLE – The UISTYLE pattern library contains user interface
functions and panel elements for listing, adding, updating, and
deleting database records.

• ACTIVE – The ACTIVE pattern library contains wrapper functions
for commonly available ActiveX controls and JavaBeans.

• DATE – The DATE pattern library contains patterns for date and
time calculations, conversions, and validation.

Technology patterns – API interfaces

• WINAPI – The WINAPI pattern library contains source code
objects, written in C++, that provide functionality for Windows
APIs such as messaging and registry support.

• AS400 – The AS400 pattern library contains a set of objects that
are used by AS/400 server functions.

• ODBC3 – The ODBC3 pattern library provides APIs for those
ODBC 3.0 features that are most likely to be used in business
applications.

• JAVAAPI – The JAVAAPI pattern library contains source code
objects that provide calls to Java API functions.

Business fundamentals – basic business objects

• FOUNDATION – The FOUNDATION pattern library contains a
group of design objects that provide patterns for basic business
objects. Most business applications will be based on patterns from
this library.

• BSUPPORT – The BUSPPORT pattern library contains patterns that
work in conjunction with other business support pattern libraries.

• In addition, the business fundamentals layer contains pattern
libraries that provide solutions for a number of domains such as
Name and Address (BCONTACT), Structure (BSTRUCTURE),
Party-Role-Stage scenarios (BPARTYROLESTAGE), and Unit of
Measure transformations (BMEASURE).

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 51

Pattern libraries structure

The COOL:Plex pattern libraries are organized in layers. At the root is
the OBJECTS pattern library, which contains basic field, function, and
variable definitions. All of the pattern libraries depend on this library.

Other layers contain: common fields, for use by all libraries;
database access support for each server variant; technology libraries
with platform-specific APIs; wrappers for ActiveX controls; and user-
interface elements, in various combinations. Beginning with the
FOUNDATION layer, you will find patterns for building business
objects, customized to fit a variety of situations.

The pattern libraries are:

The FOUNDATION pattern library

The FOUNDATION pattern library contains these basic entities:

• EditDetail – for basic maintenance of database records

• EditDialog – provides separate dialog boxes for adding, changing,
and deleting database records

• ReferredTo – for entities that are the target of a refers to or
owned by relation

• Filter – enables you to define criteria to use for filtering records to
read

• Owned – the child part of a parent/child relationship

• OwnedCascade – adds cascade delete processing to Owned

This library contains support for entities with enumerated keys:

• Surrogate – assigns a numeric primary key to an entity

• SurrogateAlternate – provides a numeric primary key, but
displays database records using an AlternateKey field

• SurrogateOwned – assigns a numeric primary key to records of a
child entity, such as the detail lines of an order

This library also contains patterns to support entities with two owners
(associated with relationships):

• AssociationEdit – a two-parent child relationship that displays
second owner records based on a selected first owner record

• AssociationGrid – a two-parent child relationship that displays
records of the owning entities in parallel grids

• AssociationDetail – enables you to add non-key attributes to the
association record itself

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 52

The Library Books example

The examples in this quick reference use a sample model based on
books and libraries. Each section of the model showcases a variety of
patterns and how you can use them. You can find this model in the
Samples directory of your COOL:Plex installation.

The following entity relationship diagram shows the structure of the
Library Books model:

Each entity in the Library Books model inherits from one or more
patterns in the FOUNDATION pattern library. In addition, each entity
inherits from STORAGE/RelationalTable.

The following table shows the entities and their definitions:

usiness support patterns

asic business objects

user interface
patterns

common fields

database access
patterns

validation patterns

Each pattern library
depends on the lower-
level libraries.

technology patterns
common low-level objects

Person is a FOUNDATION/EditDetail
is a FOUNDATION/ReferredTo

Book is a FOUNDATION/EditDialog
is a FOUNDATION/SurrogateAlternate
is a FOUNDATION/ReferredTo

Publisher is a FOUNDATION/EditDetail
is a FOUNDATION/ReferredTo

Department is a FOUNDATION/EditDetail
is a FOUNDATION/Owned
is a BSUPPORT/Overridden

Library is a FOUNDATION/EditDetail
is a FOUNDATION/Surrogate
is a FOUNDATION/Filter
is a FOUNDATION/ReferredTo
is a BSUPPORT/ListExtension

Book-Library is a FOUNDATION/AssociationDetail

Reservation is a FOUNDATION/EditDialog
is a FOUNDATION/SurrogateOwned

LibrarySystemSurrogates is a FOUNDATION/SurrogateSystem

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 53

EditDetail – for basic maintenance of database records

EditDetail is an entity that enables end-users to view database
records, and to add, change, and delete records. The Edit function
scoped to EditDetail lists database records in a grid on the left, and
displays the selected row in an editing region on the right:

To add one record, click New. To add several records in succession,
select Continue New, and then click New. When you add more than
one record at a time, the grid is not refreshed after each addition.

To refresh the grid, click the Refresh button above the grid.

Implementing EditDetail

To create an EditDetail entity:

1. Add the following inheritance triple to your model:

Publisher is a FOUNDATION/EditDetail

2. If your application uses a relational database, add the following
inheritance triple:

Publisher is a STORAGE/RelationalTable

3. Specify the attributes of your entity, including inheritance triples
for each field.

4. In the Object Browser, expand the Edit function you inherited
from EditDetail.

5. Edit the large property of the scoped Caption object so that it
contains the text you want to display on the title bar of the panel.

6. Open the panel design for the inherited Edit.Panel, and modify
the panel so that the fields and controls are positioned where you
want them.

You might need to move the grid region so that it does not
overlap the Refresh button; or you might want to reposition the
Apply, New, Refresh, and Delete buttons.

7. Close the panel design and save your changes.

8. Generate and build your EditDetail entity and all of its scoped
objects.

9. To test the new functionality, run the Edit function.

OBASE analogue: This entity provides the same basic
functionality as Grid Maintained Entity.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 54

EditDialog – provides separate dialog boxes for adding,
changing, and deleting database records

EditDialog is an entity that scopes a suite of functions that enable
end-users to view database records, and to add, change, and delete
records in separate dialog boxes.

Consider inheriting from EditDialog when your entity has more than
five attributes or if you specifically want individual dialog boxes for
adding, changing, and deleting records.

For a list of all records:

To add a record, click the Add button on the Grid panel:

To change a record, click the Change button on the Grid panel:

OBASE analogue: This entity provides the same basic
functionality as User Maintained Entity.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 55

To delete a record, click the Delete button on the Grid panel: Implementing EditDialog

To create an EditDialog entity:

1. Add the following inheritance triple to your model:

Book is a FOUNDATION/EditDialog

2. If your application uses a relational database, add the following
inheritance triple:

Book is a STORAGE/RelationalTable

3. Specify the attributes of your entity, including inheritance triples
for each field.

4. In the Object Browser, expand the EditSuite function you
inherited from EditDialog.

Notice the four functions in the EditSuite: Delete, Grid, Insert,
and Update.

5. In the Object Browser, expand each EditSuite function, and edit
the large property of the scoped Caption object so that it contains
the text you want to display on the title bar.

6. For each EditSuite function, open the panel design for the scoped
Panel, and modify the panel so that the fields and controls are
positioned where you want them.

7. Close the panel design and save your changes.

8. Generate and build your EditDialog entity and all of its scoped
objects.

9. To test the new functionality, run the Grid function scoped to
EditSuite.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 56

ReferredTo – for the target of a refers to relation

ReferredTo is an entity that supports reference checking and prompt
processing. If your entity is the target of an ENT refers to ENT or
ENT owned by ENT triple, then you can use ReferredTo to verify the
referential integrity of database records.

Inherit from ReferredTo in addition to another pattern such as
FOUNDATION/EditDetail or FOUNDATION/EditDialog.

ReferredTo scopes a Selector function that allows end-users to select
from a list of existing records to fill in a foreign key field on a panel.

When you double-click a foreign key field, the Selector Panel
appears:

OBASE analogue: This entity provides the same basic
functionality as Referenced Entity, but does not return virtual
attributes.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 57

Implementing ReferredTo

Inherit from FOUNDATION/ReferredTo, in addition to one of the other
patterns in the FOUNDATION pattern library, such as EditDialog or
EditDetail.

To define a ReferredTo entity:

1. Assume that your model has the following triples:

Book is a FOUNDATION/EditDialog

Book is a STORAGE/RelationalTable

Publisher is a FOUNDATION/EditDetail

Publisher is a STORAGE/RelationalTable

Book refers to Publisher

2. Add the following triple:

Publisher is a FOUNDATION/ReferredTo

3. Open the panel scoped to the Selector function you inherited from
ReferredTo, and make any changes you want to the panel layout.

4. Close the panel design and save your changes.

5. If you want, edit the message object Caption scoped to Selector
to change the title bar text for the selector panel.

6. Generate and build the following functions:

• Publisher.Selector

• Publisher.Fetch.CheckRow

• Book.EditSuite.Insert

• Book.EditSuite.Update

7. Test the Insert and Update functions in Book’s EditSuite to see
that referential integrity checking and prompt processing are now
working.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 58

Filter – enables you to define criteria to use for filtering
records to read

Filter is an entity that enables you to define filtering criteria to specify
which records of a relational database to display on a grid.

The FilteredGrid function scoped to this entity calls the FilterCriteria
function to allow end-users to define filter conditions using a
combination of operators and field values. The criteria you define are
combined and passed to the server for filtering:

• For SQL databases, you can specify how to combine filtering
criteria using the logical operators AND and OR.

• For DDS databases, the filter criteria are ANDed together.

• You can save the filter criteria you define to a file and load them
for future use.

Inherit from Filter in addition to another pattern such as
FOUNDATION/EditDetail or FOUNDATION/EditDialog.

Note: The FilterCriteria function scoped to this entity makes explicit
references to SQL or DDS as a database language. Therefore, you
can only inherit from this entity if you have also inherited from
STORAGE/RelationalTable.

Using the FilterCriteria panel, you can specify how to filter records:

• Click Save to save a set of filter criteria for future use.

• Click Load to use a set of filter criteria that you have previously
saved.

OBASE analogue: This entity combines the functionality of
Entity With User Filter and Entity With SQL Data.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 59

Implementing Filter

Remember that you can only use the functionality of this entity if you
also inherit from STORAGE/RelationalTable.

To define a Filter entity:

1. Assume that your model has the following triples:

Library is a FOUNDATION/EditDetail

Library is a STORAGE/RelationalTable

2. Add the following triple:

Library is a FOUNDATION/Filter

Inheriting from Filter adds a function called FilteredGrid, and a
view called Filter to Library. The FilteredGrid function lets you
filter database records for display, using the FilterCriteria function
scoped to the Filter view. The Filter view contains the fields you
can use to define filter criteria.

3. Add the following triple to your Edit function to enable filter
processing:

Library.Edit replaces UIBASIC/Grid
… by Library.FilteredGrid

Note: If your entity inherits from FOUNDATION/EditDialog
instead of FOUNDATION/EditDetail, add this triple to your entity's
EditSuite.Grid function instead.

4. Open the panel scoped to your Edit function. Notice that

inheriting from FilteredGrid added a Filter button to the grid
region.

5. Select the Filter button and drag it so that it does not cover the
Copy button, or any other button in the grid region.

6. Close the panel design and save your changes.

7. Generate and build the following objects:

• Library.Edit

• Library.Filter, and its scoped functions

8. To test your changes, run your Edit function and click the Filter

button .

Defining filter criteria

Using the FilterCriteria panel, you can define criteria to send to the
server to filter database records.

Defining filter criteria involves:

• Specifying filter conditions

• Fields – by value or field-to-field comparison

• Operators – numeric vs. character fields

• Combining conditions: SQL vs. DDS

• Loading, saving, or changing filter criteria

Notes:

• For key fields in a DDS database, only the Greater Than Or Equal
To operator is available.

• The Starts With and Contains operators only apply to character
fields.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 60

Owned – the child part of a parent/child relationship

Owned is an abstract entity, used for the child part of a parent/child
relationship. An Owned entity has at least one ENT owned by ENT
triple associated with it. Owned records depend on Owner records; in
other words, you cannot work with a record of an owned entity
without specifying which owner record it belongs to.

An entity can be both a child and a parent, for grandparent/parent/
child relationships, such as Company-Department-WorkGroup. In this
case, the keys of Company are automatically used to restrict lists of
Department records, and the keys of both Company and Department
to restrict records of WorkGroup.

To use an Owned entity, you need to specify the owning entity. When
you inherit from Owned, you must replace the abstract entity
FOUNDATION/Owner; however, do not inherit from Owner directly.
Inheriting from Owner could cause unexpected results in an
application.

Note: The Owned entity does not include functionality for cascade
deletion (where deleting a parent record also deletes remaining child
records for that parent). If you want cascade deletion, inherit from
FOUNDATION/OwnedCascade instead. Using OwnedCascade is
identical to using Owned in all other respects.

Implementing owner/owned relationships

In this example, a Publisher entity owns an entity called Department.
Both Publisher and Department inherit from FOUNDATION/EditDetail
for user interface processing.

Because EditDetail does not contain any processing for restricted
keys, you need to modify the inherited Edit function to specify a
parent record in order to see only corresponding records of the child
entity.

Implementing an owner/owned relationship consists of:

• Defining the entities

• Adding restrictor processing to the user interface functions

• Calling the user interface functions with an owner key

To define the entities in the owner/owned relationship:

1. Assume that your model has an entity called Publisher:

Publisher is a FOUNDATION/EditDetail

2. Add the following inheritance triples:

Department is a FOUNDATION/EditDetail

Department is a FOUNDATION/Owned

Note: If you want cascade delete processing for your entity,
inherit from FOUNDATION/OwnedCascade instead of Owned.

3. If your application uses a relational database, add the following
inheritance triples:

Publisher is a STORAGE/RelationalTable

Department is a STORAGE/RelationalTable

OBASE analogue: This entity is analogous to the Child
entity.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 61

4. In the Model Editor, select the Department is a Owned triple, and

click the Editor button .

This opens the Template Editor. You will use this editor to specify
which entity in your model actually owns the Department entity.

5. Type Publisher in the Replaced By column to identify the owner
of Department. Close the Template Editor and save your changes.

This adds the following triple to your model:

Department replaces FOUNDATION/Owner
… by Publisher

To add restrictor processing to user interface functions:

1. Add the following triples to enable restricted data fetches for
EditDetail:

Department.Edit input view Department.SuperKeys
… for OBJECTS/Input

Department.Edit local view Department.SuperKeys
… for STORAGE/Restrict

The view Department.SuperKeys contains the key fields of the
owning entity, in this case Publisher. These triples specify that you
only want to edit Department records for a specific Publisher.

2. Add the following triple to replace BlockFetch with the specialized
function BlockFetchSet that you inherited from Owned:

Department.Edit replaces Department.Fetch.BlockFetch
… by Department.Fetch.BlockFetchSet

This function uses the key values that you specified for the local
variable Restrict in the preceding step.

To specify a parent key:

1. To edit Departments associated with a specific Publisher, open the
panel scoped to Publisher.Edit, and add a push button labeled
Departments.

2. Add an event, Show Departments, and map it to the Pressed
physical event on your Departments button. Close the panel
design and save your changes.

3. Open the action diagram for Publisher.Edit and go to the Events
collection point.

4. Add an event construct for your Show Departments event, with a
call to Department.Edit:

5. Map the Department ID from the DetailP variable. Close the
action diagram and save your changes.

Putting it all together:

1. Generate and build:

• the Department entity and its scoped objects

• Publisher.Edit

2. To test the owner/owned relationship, run Publisher.Edit, and click
the Departments button you created.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 62

Surrogate – assigns a numeric primary key to an entity

Surrogate is an entity that assigns numeric primary keys to database
records. Keys are assigned sequentially as you add each new record.

Inherit from this entity to supplement the functionality of an entity
such as FOUNDATION/EditDetail. You do not need to specify a
known by relation for your entity; inheriting from Surrogate
provides a key field, FIELDS/Surrogate.

Note: Whenever you inherit from FOUNDATION/Surrogate or
FOUNDATION/SurrogateAlternate, your model must have an entity
that inherits from FOUNDATION/SurrogateSystem. SurrogateSystem
maintains the surrogate values assigned to all of the entities in your
application.

Implementing Surrogate

Implementing a Surrogate entity consists of:

• Defining the inheritance and replacement triples

• Modifying panel designs

• Specifying a SurrogateSystem entity

To define the inheritance and replacement triples:

1. Assume that your model includes the following triples:

Library is a FOUNDATION/EditDetail

Library is a STORAGE/RelationalTable

Library ID is a FIELDS/Surrogate

2. Add the following inheritance triple to your model:

Library is a FOUNDATION/Surrogate

3. Select the inheritance triple you just added and click the Editor

button .

This opens the Template Editor. You will use this editor to specify
which field in your model is actually the primary key of Library.

4. Type Library ID in the Replaced By column. Close the Template
Editor and save your changes.

This adds the following triple to your model:

Library replaces FIELDS/Surrogate
… by Library ID

OBASE analogue: This entity is analogous to Enumerated
Entity.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 63

To modify the panel designs:

1. For any panels in your application where end-users can add or
change Surrogate records (in this example, Library.Edit.Panel),
open the panel design and either set the mode of your Surrogate
field to Read Only, or set the Visible property of the field to No.

2. Close the Panel Designer and save your changes.

To specify the SurrogateSystem entity:

1. If you have not already defined a FOUNDATION/SurrogateSystem
entity for your model, define one now.

This entity maintains information about numeric surrogate values
assigned to all of the Surrogate and SurrogateAlternate entities in
your application.

2. Add the following replacement triple to use your
SurrogateSystem entity:

Library replaces FOUNDATION/SurrogateSystem
…by LibrarySystemSurrogates

Putting it all together:

1. Generate and build your Surrogate entity and all of its scoped
objects. If you have not already generated and built your
application's SurrogateSystem entity, generate and build it as
well.

2. Add some records to your Surrogate entity to test the automatic
key assignments.

Implementing SurrogateSystem

To create a SurrogateSystem entity to maintain surrogate key values
assigned to entities in your application:

1. Add the following inheritance triple to your model:

MySurrogateSystem is a FOUNDATION/SurrogateSystem

2. If your application uses a relational database, add the following
inheritance triple:

MySurrogateSystem is a STORAGE/RelationalTable

3. For each entity in your model that inherits from either
FOUNDATION/Surrogate or FOUNDATION/SurrogateAlternate,
add the following replacement triple:

MySurrogateEntity replaces FOUNDATION/SurrogateSystem
…by MySurrogateSystem

Note: You must add this triple in the Model Editor; you cannot
use the Template Editor to add it.

4. Generate and build MySurrogateSystem and all of its scoped
objects.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 64

SurrogateAlternate – provides a numeric primary key,
but displays records using a specified AlternateKey field

SurrogateAlternate is an entity that assigns numeric primary keys to
database records. Keys are assigned sequentially, as you add each
new record, and stored in a special field, FOUNDATION/
HiddenSurrogate. This field scopes another field, AlternateKey, whose
values will be displayed instead of the primary key on panels in your
application.

When you use SurrogateAlternate, records are listed in order by the
AlternateKey field. The functions scoped to this entity prevent you
from entering duplicate AlternateKey values.

As an example, a Book entity that inherits from SurrogateAlternate
will have a HiddenSurrogate as its primary key, and the scoped
AlternateKey field associated with each record could display the Book
Title rather than the numeric key assigned to it.

Inherit from this entity to supplement the functionality of an entity
such as FOUNDATION/EditDetail or FOUNDATION/EditDialog.

Note: Whenever you inherit from FOUNDATION/SurrogateAlternate
or FOUNDATION/Surrogate, your model must have a FOUNDATION/
SurrogateSystem entity. SurrogateSystem maintains the surrogate
values assigned to all of the entities in your application.

Implementing SurrogateAlternate

Implementing a SurrogateAlternate entity is similar to implementing
a Surrogate entity, with one significant addition. For a
SurrogateAlternate entity, you define an AlternateKey field, which will
be displayed in place of the numeric key assigned to database
records.

Implementing a SurrogateAlternate entity consists of:

• Defining the inheritance and replacement triples

• Defining the AlternateKey field

• Modifying panel designs

• Specifying a SurrogateSystem entity

To define the inheritance and replacement triples:

1. Assume that your model includes the following triples:

Book is a FOUNDATION/EditDialog

Book is a STORAGE/RelationalTable

Book ID is a FOUNDATION/HiddenSurrogate

2. Add the following inheritance triple to your model:

Book is a FOUNDATION/SurrogateAlternate

3. Select the inheritance triple you just added and click the Editor

button .

This opens the Template Editor. You will use this editor to specify
which field in your model is actually the primary key of Book.

4. Type Book ID in the Replaced By column for HiddenSurrogate.
Close the Template Editor and save your changes.

OBASE analogue: This entity provides an extended version
of the functionality of Enumerated Entity.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 65

This adds the following triple to your model:

Book replaces FOUNDATION/HiddenSurrogate
… by Book ID

5. Add the following triple to use the specialized BlockFetch function
that returns records in AlternateKey order:

Book.EditSuite.Grid replaces Book.Fetch.BlockFetch
...by Book.AlternateKey.BlockFetch

To define the AlternateKey field:

1. Add an inheritance triple to the AlternateKey field scoped by your
HiddenSurrogate field to define properties for this field; for
example:

Book ID.AlternateKey is a FIELDS/ShortDescription

2. Add label, left label, and top label triples to your AlternateKey
field to specify how you want this field identified on panels; for
example you could use a label of Book Title:

Book ID.AlternateKey label BookTitle

BookID.AlternateKey left label BookTitle

Book ID.AlternateKey top label BookTitle

3. Add the literal value Book Title to the large property of the
BookTitle label you just created.

4. Add the following triples to replace the views used by the IntToExt
and ExtToInt functions scoped to your HiddenSurrogate field:

Book ID.IntToExt replaces SurrogateAlternate.Fetch
… by Book.Fetch

Book ID.ExtToInt replaces SurrogateAlternate.AlternateKey
… by Book.AlternateKey

To modify the panel designs:

1. For any panels in your application where end-users can add or
change records of your SurrogateAlternate entity (in this
example, the functions scoped to Book.EditSuite), open the panel
design and either set the mode of your HiddenSurrogate field to
Read Only, or set the Visible property of the field to No.

2. Close the Panel Designer and save your changes.

To specify the SurrogateSystem entity:

1. If you have not already defined a FOUNDATION/SurrogateSystem
entity for your model, define one now (for more information, see
page 63).

This entity maintains information about numeric surrogate values
assigned to all of the FOUNDATION/Surrogate and FOUNDATION/
SurrogateAlternate entities in your application.

2. Add the following replacement triple:

Book replaces FOUNDATION/SurrogateSystem
…by LibrarySystemSurrogates

Putting it all together:

1. Generate and build your SurrogateAlternate entity, your
HiddenSurrogate field, and the objects scoped to each. If you
have not already generated and built your application's
SurrogateSystem entity, generate and build it as well.

2. Add some records to your SurrogateAlternate entity to test the
automatic key assignments and the display of the alternate field
you specified.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 66

SurrogateOwned – assigns a numeric primary key to
records of a child entity, such as the detail lines of an order

SurrogateOwned is an entity that assigns a numeric primary key
value to each record of an entity that is owned by another entity.

Because SurrogateOwned contains no user interface elements, you
must either inherit from FOUNDATION/EditDetail or FOUNDATION/
EditDialog, or define your own user interface processing using
patterns from the UIBASIC or UISTYLE pattern libraries.

The BySurrogate view scoped to this entity determines the next
available surrogate value to assign to records associated with a
specific record of the owning entity, FOUNDATION/Owner.

Implementing SurrogateOwned

In this example, the Book-Library entity owns an entity called
Reservation. Reservation is a SurrogateOwned entity and inherits
from FOUNDATION/EditDialog for user interface processing.

Because EditDialog does not provide any processing for restricted
keys, you need to modify the inherited Insert and Grid functions to
specify a parent record to see only corresponding records of the child
entity.

Implementing a SurrogateOwned entity consists of:

• Defining the owner and owned entities

• Adding restrictor processing to the user interface functions

• Calling the user interface functions with an owner key

To define the entities in the owner/owned relationship:

1. Assume that your model has an association entity called Book-
Library:

Book-Library is a FOUNDATION/AssociationDetail

2. Add the following inheritance triples:

Reservation is a FOUNDATION/EditDialog

Reservation is a FOUNDATION/SurrogateOwned

3. If your application uses a relational database, add the following
inheritance triples:

Book-Library is a STORAGE/RelationalTable

Reservation is a STORAGE/RelationalTable

4. In the Model Editor, select the Reservation is a SurrogateOwned

triple, and click the Editor button .

This opens the Template Editor. You will use this editor to specify
which entity actually owns the Reservation entity, and which field
is actually the primary key of Reservation (in addition to the keys
of the owning entity).

5. Type Book-Library in the Replaced By column to identify the
owner of Reservation, and type Reservation Number in the
Replaced By column to identify the enumerated key field.

6. Close the Template Editor and save your changes.

OBASE analogue: This entity provides a modified version of
the functionality of Enumerated Entity.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 67

This adds the following triples to your model:

Reservation replaces FOUNDATION/Owner
…by Book-Library

Reservation replaces FIELDS/Surrogate
…by Reservation Number

To add restrictor processing to user interface functions:

1. Add the following triples to enable restricted data fetches for the
Insert and Grid functions of EditDialog's EditSuite:

Reservation.EditSuite.Insert input view Reservation.SuperKeys
…for OBJECTS/Input

Reservation.EditSuite.Insert local view Reservation.SuperKeys
…for STORAGE/Restrict

Reservation.EditSuite.Grid input view Reservation.SuperKeys
…for OBJECTS/Input

Reservation.EditSuite.Grid local view Reservation.SuperKeys
…for STORAGE/Restrict

The view Reservation.SuperKeys contains the key fields of the
owning entity, in this case Book-Library. These triples specify that
you only want to edit Reservation records for a specific Book-
Library record.

2. Add the following triple to replace BlockFetch with the specialized
function BlockFetchSet that you inherited from SurrogateOwned:

Reservation.EditSuite.Grid replaces Reservation.Fetch.BlockFetch
…by Reservation.Fetch.BlockFetchSet

This function uses the key values that you specified for the local
variable Restrict in the preceding step.

To specify an owner key:

1. To edit Reservations for a specific Book and Library combination,
open the panel scoped to Book-Library.Edit, and add a push
button labeled Reservations in the detail region at the bottom of
the panel.

2. Add an event, Reservations, and map it to the Pressed physical
event on your Reservations button. Close the panel design and
save your changes.

3. Open the action diagram for Book-Library.Edit and go to the
Events collection point.

4. Add an event construct for your Reservations event, with a call to
Reservation.EditSuite.Grid:

5. Map the Book ID and the Library ID owner key fields from the
DetailP variable. Close the action diagram and save your changes.

Putting it all together:

1. Generate and build:

• the Reservation entity and all of its scoped objects

• Book-Library.Edit

2. To test the new functionality, run Book-Library.Edit and click the
Reservations button you created.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 68

AssociationEdit – a two-parent child relationship that
displays second owner records based on a selected record of
the first owner

AssociationEdit is an entity that contains functionality to work with an
entity that is owned by two parent entities. You can use this entity
to model an associated with relationship. Because this “many-to-
many” relationship cannot be resolved directly in a relational
database, you can use a new entity to store the cross references.

AssociationEdit is owned by two abstract entities, FOUNDATION/
Owner and FOUNDATION/Owner2. When you inherit from
AssociationEdit, you replace these abstract entities with the actual
parent entities in your model.

This pattern displays a first owner record in a detail region, and
enables end-users to associate it with second owner records
displayed in a grid. To use this functionality, call AssociationEdit.Edit
with a first owner record selected.

Note: If you use this pattern, do not define any attributes on the
entity that inherits from it. If you want to specify non-key attributes
for an entity of this sort, inherit from FOUNDATION/AssociationDetail
instead.

End-users specify associations by selecting a first owner record, and
clicking the Include column of the grid twice to select or deselect
second owner records.

• When an end-user selects Include, this function calls
Update.InsertRow to add an AssociationEdit record.

• When an end-user deselects Include, this function calls
Update.DeleteRow to remove the AssociationEdit record.

OBASE analogue: This entity is analogous to Two Parent
Child, with the edit dialog function option set to No.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 69

Implementing AssociationEdit

To create an AssociationEdit entity; for example, one that associates
books with libraries:

1. Assume that your model has the following triples:

Book is a FOUNDATION/EditDialog

Book is a STORAGE/RelationalTable

Library is a FOUNDATION/EditDetail

Library is a STORAGE/RelationalTable

2. Add the following inheritance triple to your model:

Book-Library is a FOUNDATION/AssociationEdit

3. If your application uses a relational database, add the following
inheritance triple:

Book-Library is a STORAGE/RelationalTable

4. In the Model Editor, select the triple where you inherit from

AssociationEdit and click the Editor button .

This opens the Template Editor. You will use this editor to specify
which entities in your model actually own the Book-Library entity.

5. In the Replaced By column for Owner, type Book, and in the
Replaced By column for Owner2, type Library. Close the
Template Editor and save your changes.

This adds the following triples to your model:

Book-Library replaces FOUNDATION/Owner
…by Book

Book-Library replaces FOUNDATION/Owner2
…by Library

6. To use the functionality in AssociationEdit, you need to call
AssociationEdit.Edit with a first owner record; in this case, a Book
record. Open the Panel scoped to Book.EditSuite.Grid and add an
event called AssignBookToLibrary.

7. Add a push button to the panel and map the Clicked physical
event to the event you just created. Close the panel design and
save your changes.

8. Open the action diagram for Book.EditSuite.Grid and go to the
Events collection point.

9. Add the following event construct:

10. Map the input parameter (in this case, Book ID) to the
corresponding field in the GridP region. Close the action diagram
and save your changes.

11. Generate and build your AssociationEdit entity and all of its
scoped objects, along with the function that calls
AssociationEdit.Edit.

12. Ensure that you have defined records for both of the owning
entities in your model (in this case, Book and Library).

13. To test the new functionality, run the function that calls your Edit
function (in this example, Book.EditSuite.Grid).

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 70

AssociationGrid – a two-parent child relationship that
displays records of the owning entities in parallel grids

AssociationGrid is an entity that contains functionality to work with
an entity that is owned by two parent entities. You can use this
entity to model an associated with relationship. Because this
“many-to-many” relationship cannot be resolved directly in a
relational database, you can use a new entity to store the cross
references.

AssociationGrid is owned by two abstract entities, FOUNDATION/
Owner and FOUNDATION/Owner2. When you inherit from
AssociationGrid, you replace these abstract entities with the actual
parent entities in your model.

This pattern lets you select a first owner record from a grid, and
associate it with second owner records in an adjacent grid.

Note: If you use this pattern, do not define any attributes on the
entity that inherits from it. If you want to specify non-key attributes
for an entity of this sort, inherit from FOUNDATION/AssociationDetail
instead.

End-users specify associations by selecting a first owner record in the
grid on the left, and clicking the Include column of the grid on the
right twice to select or deselect records of the second owning entity.

• When an end-user selects Include, this function calls
Update.InsertRow to add an AssociationGrid record.

• When an end-user deselects Include, this function calls
Update.DeleteRow to remove the AssociationGrid record.

OBASE analogue: This entity is analogous to Two Parent
Child, with the edit dialog function option set to No.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 71

Implementing AssociationGrid

To create an AssociationGrid entity; for example, one that associates
books with libraries:

1. Assume that your model has the following triples:

Book is a FOUNDATION/EditDialog

Book is a STORAGE/RelationalTable

Library is a FOUNDATION/EditDetail

Library is a STORAGE/RelationalTable

2. Add the following inheritance triple to your model:

Book-Library is a FOUNDATION/AssociationGrid

3. If your application uses a relational database, add the following
inheritance triple:

Book-Library is a STORAGE/RelationalTable

4. In the Model Editor, select the triple Book-Library is a

AssociationGrid, and click the Editor button .

This opens the Template Editor. You will use this editor to specify
which entities in your model actually own the Book-Library entity.

5. In the Replaced By column for Owner, type Book, and in the
Replaced By column for Owner2, type Library. Close the
Template Editor and save your changes.

This adds the following triples to your model:

Book-Library replaces FOUNDATION/Owner
…by Book

Book-Library replaces FOUNDATION/Owner2
…by Library

6. Generate and build your AssociationGrid entity and all of its
scoped objects.

7. Ensure that you have defined records for both of the owning
entities in your model (in this case, Book and Library).

8. To test the new functionality, run the Edit function.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 72

AssociationDetail – a two-parent child relationship that
enables you to add non-key attributes to the association
record itself

AssociationDetail is an entity that contains functionality to work with
an entity that is owned by two parent entities. You can use this
entity to model an associated with relationship. Because this
“many-to-many” relationship cannot be resolved directly in a
relational database, you can use a new entity to store the cross
references.

AssociationDetail is owned by two abstract entities, FOUNDATION/
Owner and FOUNDATION/Owner2. When you inherit from
AssociationDetail, you replace these abstract entities with the actual
parent entities in your model.

This pattern lets you select a first owner record from a grid, and
associate it with second owner records in an adjacent grid. Using this
pattern, you can also specify attributes for your AssociationDetail
entity, in addition to the two parent keys.

Note: This is the only one of the Association patterns where you can
define non-key attributes.

End-users specify associations by selecting a first owner record,
selecting a second owner record, and then modifying the values in
the detail region:

• When an end-user clicks Apply, this function calls
Update.InsertRow to add an AssociationDetail record.

• When an end-user clicks Delete, this function calls
Update.DeleteRow to remove the AssociationDetail record.

OBASE analogue: This entity is analogous to Two Parent
Child, with the edit dialog function option set to Yes.

The FOUNDATION pattern library COOL:Plex 4.5 Quick Reference 73

Implementing AssociationDetail

To create an AssociationDetail entity; for example, one that
associates books with libraries:

1. Assume that your model has the following triples:

Book is a FOUNDATION/EditDialog

Book is a STORAGE/RelationalTable

Library is a FOUNDATION/EditDetail

Library is a STORAGE/RelationalTable

2. Add the following inheritance triple to your model:

Book-Library is a FOUNDATION/AssociationDetail

3. If your application uses a relational database, add the following
inheritance triple:

Book-Library is a STORAGE/RelationalTable

4. In the Model Editor, select the triple where you inherit from

AssociationDetail and click the Editor button .

This opens the Template Editor. You will use this editor to specify
which entities in your model actually own the Book-Library entity.

5. In the Replaced By column for Owner, type Book, and in the
Replaced By column for Owner2, type Library. Close the
Template Editor and save your changes.

This adds the following triples to your model:

Book-Library replaces FOUNDATION/Owner
…by Book

Book-Library replaces FOUNDATION/Owner2
…by Library

6. Add any non-key attributes you want for your AssociationDetail
entity, including inheritance triples.

7. Generate and build your AssociationDetail entity and all of its
scoped objects.

8. Ensure that you have defined records for both of the owning
entities in your model (in this case, Book and Library).

9. To test the new functionality, run the Edit function.

Creating a wizard COOL:Plex 4.5 Quick Reference 74

Creating a wizard

Wizards use two patterns from the UISTYLE pattern library that take
advantage of COOL:Plex’s panel frames feature: UISTYLE/
FrameWizard and UISTYLE/FrameChild. The wizard parent,
FrameWizard, is the function that starts the wizard sequence. The
child functions form the individual parts of the sequence.

In addition to FrameWizard and FrameChild, you can inherit from
functions in the UIBASIC pattern library to customize the child
functions in your wizard sequence.

Defining a wizard includes the following stages:

• Design the wizard sequence and define the functions involved

• Identify fields that will be used as global data among the
functions in the wizard sequence

• Add custom code to enable the wizard functionality

• Modify the panels and captions of the child functions

• Call the wizard parent function to start the wizard

To define the wizard sequence:

1. Specify a function to be the starting point for the wizard, and
inherit from UISTYLE/FrameWizard. For example, the Library
Books model contains a function called ReserveABook:

ReserveABook is a UISTYLE/FrameWizard

2. For each function in the wizard sequence, inherit from UISTYLE/
FrameChild, in addition to any other functions you need to inherit
from to define your function, such as UIBASIC/FullGrid or
UIBASIC/Input. For example:

Person.IdentifyPerson is a UISTYLE/FrameChild
Book.SelectBook is a UISTYLE/FrameChild
Book-Library.SelectLibrary is a UISTYLE/FrameChild
Reservation.SetReservationDate is a UISTYLE/FrameChild

3. To specify the functions in the wizard sequence, add a FNC
comprises FNC triple for each child function in the order they'll
occur in the wizard sequence. For example:

ReserveABook comprises Person.IdentifyPerson
ReserveABook comprises Book.SelectBook
ReserveABook comprises Book-Library.SelectLibrary
ReserveABook comprises Reservation.SetReservationDate

To specify fields common to all of the wizard sequence:

Rather than using input and output parameters, functions in a wizard
use fields in the Local variable UISTYLE/SharedData to communicate
information with other functions in the sequence. This variable
appears in all functions that inherit from either FrameWizard or
FrameChild. Because all child functions are running at once, they can
use the global properties array that FrameWizard creates using the
fields in SharedData.

1. Review your wizard design and identify all of the fields that will be
needed by more than one function in your wizard sequence.

For example, child functions in the Reserve Library Book wizard
share the fields Person ID, Person Name, Book ID, Library ID,
Library Branch, Reserved Date, and TimeReserved.

The first function in the sequence, IdentifyPerson, captures a
person's ID and retrieves the person's name, which is displayed
in the second function, SelectBook. Similarly, the second function

Creating a wizard COOL:Plex 4.5 Quick Reference 75

saves a selected book, which the third function, SelectLibrary,
uses to display a list of associated libraries.

2. Open the action diagram for each function in your wizard
sequence, including the wizard parent, and drag the global fields
you identified from the Object Browser to the Local variable
SharedData.

COOL:Plex adds a triple to your model for each field you add to
Data; for example:

Person.IdentifyPerson local Person ID
…for UISTYLE/SharedData

3. Close each action diagram and save your changes.

Note: You can add the FNC local FLD triples to each function
directly, rather than dragging them into the variable in the action
diagram, if you prefer.

To add custom code to the wizard part functions:

Because the functions in a wizard sequence communicate with each
other by triggering events, processing does not always begin with the
Initialization section of a function. Instead, the FrameChild pattern
provides collection points where you can add processing at the
beginning of a wizard function or at the end, when an end-user clicks
Next or Back to move to another function.

• When you need to initialize values in a child function, open that
function's action diagram and use the End Show Panel collection
point.

• To add processing at the end of a child function, before moving to
another function, add the code in the Set Release Control Flag
collection point.

Note: If you do not want to exit the child function, set the field
FIELDS/ReleaseControl, in the local variable FrameChildL to No.

To customize the wizard panels:

The size of the child site region on the parent panel determines the
display size of child panels in your wizard sequence.

1. Open the panel scoped to each function in your wizard sequence
in the Panel Designer.

• In each child function, set the panel size to the size of the
largest child panel in your wizard sequence.

• In the parent function, set the size of the child site to the size
of your child panels.

2. Close the Panel Designer and save your changes.

Tip: You can define a customized child function (for example,
FrameWizardPart), that has panel regions for a bitmap image and
instruction text. Then, each child function in your wizard can inherit
from your new function instead of inheriting directly from UISTYLE/
FrameChild. The Library Books model contains an example of such a
function, called FrameWizardPart.

Putting it all together:

1. Choose a function in your application that will start the wizard,
and add a call in that function to your wizard parent function.

2. Generate and build the functions in your wizard sequence and the
function that calls the wizard parent function.

3. Run your application and test your wizard sequence.

Creating a property sheet COOL:Plex 4.5 Quick Reference 76

Creating a property sheet

Property sheets use two patterns from the UISTYLE pattern library
that use COOL:Plex’s panel frames feature: UISTYLE/FrameProperty
and UISTYLE/FrameChild. FrameProperty uses the ActiveX pattern
ACTIVE/TabStrip to display the tabs on the property sheet. The
parent function, based on FrameProperty, is the function that
controls the property sheet. The child functions, based on
FrameChild, form the individual parts.

In addition to FrameProperty and FrameChild, you can inherit from
functions from the UIBASIC pattern library to customize the child
functions in your property sheet.

Defining a property sheet includes the following stages:

• Design the property sheet structure and define the functions
involved

• Specify images to display on the tabs (optional)

• Modify the panels of the child functions

• Identify fields that will be used as global data among the parts

• Add custom code to enable the property sheet parts

• Call the parent function to start the property sheet

To define the property sheet structure:

1. Specify a function to be the starting point, and inherit from
UISTYLE/FrameProperty. For example, the Library Books model
contains a function called LibrarySystemProperties:

LibrarySystemProperties is a UISTYLE/FrameProperty

2. For each child function, inherit from UISTYLE/FrameChild, in
addition to any other functions you need to inherit from to define
your function, such as UIBASIC/FullGrid or UIBASIC/Input. For
example:
Person.PersonProperties is a UISTYLE/FrameChild
Book.BookProperties is a UISTYLE/FrameChild
Library.LibraryProperties is a UISTILE/FrameChild
Publisher.PubProperties is a UISTYLE/FrameChild

3. To specify the functions for the property sheet tabs, add a FNC
comprises FNC triple for each function in the order they'll occur
on the tabs. For example:
LibrarySystemProperties comprises Person.PersonProperties
LibrarySystemProperties comprises Book.BookProperties
LibrarySystemProperties comprises Library.LibraryProperties
LibrarySystemProperties comprises Publisher.PubProperties

To specify images to display on the tabs (optional):

1. Identify the images you want to display on each of the tabs.

2. For each image in your list, add a FNC option NME triple to the
scoped Scripts function you inherited from the image list control,
in the order you want to place the images:
LibrarySystemProperties.Scripts option People
LibrarySystemProperties.Scripts option Books
LibrarySystemProperties.Scripts option Libraries
LibrarySystemProperties.Scripts option Publishers

Note: The Scripts function contains no code. Therefore, placing
the option triples on this function cannot interfere with any other
function options that could have been defined.

Creating a property sheet COOL:Plex 4.5 Quick Reference 77

3. For each NME object, click the Name button.

4. Under Narrative, type the name of a bitmap to display; for
example, ./people.bmp.

Note: The images must be in bitmap (.bmp) format and must
reside in the directory where you will run your application. The
dot before the name indicates the current directory. Notice the
forward slash (/).

5. Open the action diagram for your parent function, and go to the
Set Tab Properties On Initialize collection point.

6. Add the following code to specify where to find the images to
display on each tab:

7. Close the action diagram and save your changes.

To customize the child panels:

The unscoped name of each child function determines the text on the
tab label for that function. To override this, you can add FNC name
NME triples to specify the text to display on that function’s tab in the
property sheet. For example:

Person.PersonProperties name People

Book.BookProperties name Books

Library.LibraryProperties name Libraries

Publisher.PubProperties name Publishers

The size of the child site region on the parent panel determines the
display size of child panels in your property sheet.

1. Open the panel scoped to each function in your property sheet in
the Panel Designer.

• In each child function, set the panel size to the size of the
largest child panel.

• In the parent function, set the size of the child site to the size
of your child panels.

2. Close the Panel Designer and save your changes.

To specify fields common to all members of the property
sheet:

Rather than using input and output parameters, functions in a
property sheet use the Local variable UISTYLE/SharedData to
communicate information with each other. Because all child functions
are running at once, they can use the global properties array that
FrameParent creates using the fields in SharedData.

All functions that inherit from either FrameProperty or FrameChild
have SharedData as a local variable. In each function, you only need
to add the fields that are actually needed by that function to
SharedData.

1. Review your property sheet design and identify the fields that will
be needed by functions on more than one tab.

2. Open the action diagram for each property sheet function,
including the parent function, and drag the global fields you
identified from the Object Browser to the Local variable
SharedData.

Creating a property sheet COOL:Plex 4.5 Quick Reference 78

COOL:Plex adds a triple to your model for each field you add to
SharedData; for example:

Person.PersonProperties local Person ID
… for UISTYLE/SharedData

3. Close each action diagram and save your changes.

Note: You can add the FNC local FLD triples to each function
directly, rather than dragging them into the variable in the action
diagram, if you prefer.

To add custom code to the property sheet functions:

Because the parent function activates child functions on a property
sheet by triggering events, processing does not always begin with
the Initialization section of a function. Instead, the FrameChild
pattern provides collection points where you can add processing at
the beginning of a child function or at the end, when an end-user
clicks a tab to move to another function.

• When you need to initialize values in a child function, open that
function’s action diagram, and use the End Show Panel collection
point.

• To add processing at the end of a child function, before moving to
the next function in the sequence, add the code in the Set
Release Control Flag collection point.

Note: If you do not want to exit the child function, set the field
FIELDS/ReleaseControl, in the local variable FrameChildL to No.

Putting it all together:

1. Choose a function in your application that will start the property
sheet, and add a call in that function to the parent function.

2. Generate and build the functions in your property sheet, and the
function that calls the parent function.

3. Run your application and test your property sheet.

Note: To test your property sheet independently of the function
that calls it, choose Create Exe from the Build menu, and run the
executable program from Windows Explorer.

Creating an MDI parent COOL:Plex 4.5 Quick Reference 79

Creating an MDI parent

To create an MDI application:

1. Add an inheritance triple to an unscoped function in your model
that will become the entry point for your application. For
example:

BookMenuMDI is a UIBASIC/MDI

2. Add the following triples to create a recognizable name for your
application so that you can run it as a separate executable
program:

BookMenuMDI.MDIParent impl name BOOKS

BookMenuMDI.MDIParent file name BOOKS

3. Open the panel design for BookMenuMDI.MenuShell.

4. Add menu items and toolbar buttons for the common elements of
your application. Link the toolbar buttons to the corresponding
menu items. Remember to specify a menu ID for each new menu
item.

5. Close MenuShell and save your changes.

6. Open the panel design for the panel scoped to
BookMenu.MDIParent. Add events for the menu items you
defined on your MenuShell. Close the panel design and save your
changes.

7. In the action diagram for BookMenu.MDIParent, go to the Events
collection point and add processing for each event you defined.

8. For each of the child windows in your application, add an
inheritance triple for your MenuShell. For example, if you have a
FOUNDATION/EditDialog entity called Book and a FOUNDATION/
EditDetail entity called Library, add the triples:

Book.EditSuite.Grid.Panel is a BookMenuMDI.MenuShell

Library.Edit.Panel is a BookMenuMDI.MenuShell

9. Generate and build.

10. Test your application by running your MDIParent function.

11. To turn your application into a separate executable program,
select your MDIParent function, and choose Create Exe from the
Build menu.

You can then run your program by double-clicking the file
BOOKS.exe.

OBASE analogue: This function is analogous to Default
Objects.MDI Template.

Customizing an ActiveX ToolBar COOL:Plex 4.5 Quick Reference 80

Customizing an ActiveX ToolBar

The pattern ACTIVE/ToolBar displays a customizable toolbar with
images, text, or both. You can inherit from this function to create a
top-level interface for your application as an alternative to using MDI
parent and child windows.

Defining a toolbar consists of:

• Specifying the toolbar buttons

• Defining events for the buttons

• Specifying the functionality associated with each button

To specify toolbar buttons:

1. Define a function that inherits from ToolBar; for example:

BookMenu is a ACTIVE/ToolBar

2. Add a FNC option NME triple for each button on the toolbar. The
source of the triple is the Scripts function you inherited from the
image list control, which is scoped to your menu function:

BookMenu.Scripts option People

BookMenu.Scripts option Books

BookMenu.Scripts option Publishers

The names you enter will become the labels on the toolbar
buttons, in the order you entered them.

Note: The Scripts function contains no code. Therefore, placing
the option triples on this function cannot interfere with any other
function options that could have been defined.

3. For each of these triples, select the target object and click the
Name button.

4. Under Narrative, type the name of a bitmap to display; for
example, ./people.bmp.

Note: The images must be in bitmap (.bmp) format and must
reside in the directory where you will run your application. The
dot before the name indicates the current directory. Notice the
forward slash (/).

5. Open the Panel scoped to your toolbar function and edit the panel
title. Change the size of the ToolBar control to match the
approximate sizes of the bitmaps you specified.

6. Close the panel design and save your changes.

To define events for the toolbar buttons:

1. Define a field that inherits from FIELDS/Button, and add values
corresponding to each button on your toolbar. For example:

BookMenuEvent is a FIELDS/Button

BookMenuEvent value People

BookMenuEvent value Books

BookMenuEvent value Publishers

2. Assign numeric values for the large property of each value,
beginning with 1.

You can ignore any warnings that your field has duplicate literals.

Customizing an ActiveX ToolBar COOL:Plex 4.5 Quick Reference 81

To define processing for each toolbar button:

1. Open the action diagram for your toolbar function, and go to the
Start ToolBar Button Clicked collection point.

2. Create a Local variable and drag your event field (in this case,
BookMenuEvent) to it.

3. Add the following action diagram code to specify the function to
call for each toolbar button:

4. Close the action diagram and save your changes.

Putting it all together:

1. Add implementation name and file name triples for your toolbar
function:

BookMenu impl name BookMenu

BookMenu file name BookMenu

2. Generate and build your toolbar function.

3. In the Generate and Build window, right-click on your function
and choose Create Exe from the pop-up menu.

4. In Windows Explorer, locate the executable program you just
created (in this case, BookMenu.exe) and double-click it to test
the new functionality.

Common pattern library fields COOL:Plex 4.5 Quick Reference 82

Common pattern library fields

Date and time fields

• DATE/CheckedDateISO – A date field in ISO date format. The
actual format depends on your system’s configuration. This is the
date format you will probably use most often.

• DATE/CheckedDate7 – A 7-digit numeric field that represents
dates in the form CYYMMDD. For example, August 7, 1998 is
0980807 in this format. Inherit from this field if your database
uses dates in this format.

• DATE/CheckedDate8 – An 8-digit numeric field that represents
dates in the form CCYYMMDD. For example, August 7, 1998 is
19980807 in this format. Inherit from this field if your database
uses dates in this format.

• DATE/CheckedTimeISO – A time in ISO time format. The actual
format depends on your system’s configuration.

• DATE/CheckedTime6 – A 6-digit numeric field that represents a
time in the format HHMMSS. Inherit from this field if your
database uses times in this format.

Text fields

• FIELDS/Identifier – A 10-character field that you can use for the
unique identifier of an object.

• FIELDS/ShortDescription – A 20-character field that you can use
for the description of an object.

• FIELDS/LongDescription – A character field with varying length
that you can use for an extended description. When you inherit
from this field, add a length triple.

Numeric fields

• FIELDS/Number – A numeric field with a length of 9 and C format
Integer. Inherit from this field for quantities up to 9999.

• FIELDS/Long – A numeric field with a length of 9 and C format
Long. Inherit from this field for quantities greater than 10,000.

• FIELDS/Price – A numeric field with a length of 9 and 2 decimal
places. Inherit from this field to represent the price of an item.

• FIELDS/Surrogate – A system-assigned numeric key for an entity.
When you inherit from FOUNDATION/Surrogate, you replace this
field with the key field for your entity.

Other useful fields

• FIELDS/Status – A field with a finite set of values from which you
want end-users to select. By default, Status fields appear as a
Combo box on a panel. If you want validation, inherit from
FIELDS/CheckedStatus instead.

• FIELDS/CheckedStatus – A Status field with built-in validation.
When you inherit from this field, you must generate and build the
scoped Check function.

• FIELDS/YesNo – A Status field with the values Yes and No.

• FIELDS/LanguageSupport – Facilitates translation for other
national languages. Inheriting from this field scopes a label object
to the field, along with left and top labels, which take their values
from the literal value of the label object.

